Cargando…
Biomarker Quantification, Spectroscopic, and Molecular Docking Studies of the Active Compounds Isolated from the Edible Plant Sisymbrium irio L.
Phytochemical investigation of the ethanolic extract of the aerial parts of Sisymbrium irio L. led to the isolation of four unsaturated fatty acids (1–4), including a new one (4), and four indole alkaloids (5–8). The structures of the isolated compounds were characterized with the help of spectrosco...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10146147/ https://www.ncbi.nlm.nih.gov/pubmed/37111255 http://dx.doi.org/10.3390/ph16040498 |
_version_ | 1785034511257436160 |
---|---|
author | Al-Massarani, Shaza M. Aldurayhim, Latifah S. Alotaibi, Ibtisam A. Abdelmageed, Mostafa W. M. Rehman, Md Tabish Basudan, Omer A. Abdel-Kader, Maged S. Alajmi, Mohamed F. Abdel Bar, Fatma M. Alam, Perwez Al Tamimi, Maram M. El Gamal, Ali A. |
author_facet | Al-Massarani, Shaza M. Aldurayhim, Latifah S. Alotaibi, Ibtisam A. Abdelmageed, Mostafa W. M. Rehman, Md Tabish Basudan, Omer A. Abdel-Kader, Maged S. Alajmi, Mohamed F. Abdel Bar, Fatma M. Alam, Perwez Al Tamimi, Maram M. El Gamal, Ali A. |
author_sort | Al-Massarani, Shaza M. |
collection | PubMed |
description | Phytochemical investigation of the ethanolic extract of the aerial parts of Sisymbrium irio L. led to the isolation of four unsaturated fatty acids (1–4), including a new one (4), and four indole alkaloids (5–8). The structures of the isolated compounds were characterized with the help of spectroscopic techniques such as 1D, 2D NMR, and mass spectroscopy, and by correlation with the known compounds. In terms of their notable structural diversity, a molecular docking approach with the AutoDock 4.2 program was used to analyze the interactions of the identified fatty acids with PPAR-γ and the indole alkaloids with 5-HT(1A) and 5-HT(2A), subtypes of serotonin receptors, respectively. Compared to the antidiabetic drug rivoglitazone, compound 3 acted as a potential PPAR-γ agonist with a binding energy of −7.4 kcal mol(−1). Moreover, compound 8 displayed the strongest affinity, with binding energies of −6.9 kcal/mol to 5HT(1A) and −8.1 kcal/mol to 5HT(2A), using serotonin and the antipsychotic drug risperidone as positive controls, respectively. The results of docked conformations represent an interesting target for developing novel antidiabetic and antipsychotic drugs and warrant further evaluation of these ligands in vitro and in vivo. On the other hand, an HPTLC method was developed to quantify α-linolenic acid in the hexane fraction of the ethanol extract of S. irio. The regression equation/correlation coefficient (r(2)) for linolenic acid was Y = 6.49X + 2310.8/0.9971 in the linearity range of 100–1200 ng/band. The content of α-linolenic acid in S. irio aerial parts was found to be 28.67 μg/mg of dried extract. |
format | Online Article Text |
id | pubmed-10146147 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101461472023-04-29 Biomarker Quantification, Spectroscopic, and Molecular Docking Studies of the Active Compounds Isolated from the Edible Plant Sisymbrium irio L. Al-Massarani, Shaza M. Aldurayhim, Latifah S. Alotaibi, Ibtisam A. Abdelmageed, Mostafa W. M. Rehman, Md Tabish Basudan, Omer A. Abdel-Kader, Maged S. Alajmi, Mohamed F. Abdel Bar, Fatma M. Alam, Perwez Al Tamimi, Maram M. El Gamal, Ali A. Pharmaceuticals (Basel) Article Phytochemical investigation of the ethanolic extract of the aerial parts of Sisymbrium irio L. led to the isolation of four unsaturated fatty acids (1–4), including a new one (4), and four indole alkaloids (5–8). The structures of the isolated compounds were characterized with the help of spectroscopic techniques such as 1D, 2D NMR, and mass spectroscopy, and by correlation with the known compounds. In terms of their notable structural diversity, a molecular docking approach with the AutoDock 4.2 program was used to analyze the interactions of the identified fatty acids with PPAR-γ and the indole alkaloids with 5-HT(1A) and 5-HT(2A), subtypes of serotonin receptors, respectively. Compared to the antidiabetic drug rivoglitazone, compound 3 acted as a potential PPAR-γ agonist with a binding energy of −7.4 kcal mol(−1). Moreover, compound 8 displayed the strongest affinity, with binding energies of −6.9 kcal/mol to 5HT(1A) and −8.1 kcal/mol to 5HT(2A), using serotonin and the antipsychotic drug risperidone as positive controls, respectively. The results of docked conformations represent an interesting target for developing novel antidiabetic and antipsychotic drugs and warrant further evaluation of these ligands in vitro and in vivo. On the other hand, an HPTLC method was developed to quantify α-linolenic acid in the hexane fraction of the ethanol extract of S. irio. The regression equation/correlation coefficient (r(2)) for linolenic acid was Y = 6.49X + 2310.8/0.9971 in the linearity range of 100–1200 ng/band. The content of α-linolenic acid in S. irio aerial parts was found to be 28.67 μg/mg of dried extract. MDPI 2023-03-27 /pmc/articles/PMC10146147/ /pubmed/37111255 http://dx.doi.org/10.3390/ph16040498 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Al-Massarani, Shaza M. Aldurayhim, Latifah S. Alotaibi, Ibtisam A. Abdelmageed, Mostafa W. M. Rehman, Md Tabish Basudan, Omer A. Abdel-Kader, Maged S. Alajmi, Mohamed F. Abdel Bar, Fatma M. Alam, Perwez Al Tamimi, Maram M. El Gamal, Ali A. Biomarker Quantification, Spectroscopic, and Molecular Docking Studies of the Active Compounds Isolated from the Edible Plant Sisymbrium irio L. |
title | Biomarker Quantification, Spectroscopic, and Molecular Docking Studies of the Active Compounds Isolated from the Edible Plant Sisymbrium irio L. |
title_full | Biomarker Quantification, Spectroscopic, and Molecular Docking Studies of the Active Compounds Isolated from the Edible Plant Sisymbrium irio L. |
title_fullStr | Biomarker Quantification, Spectroscopic, and Molecular Docking Studies of the Active Compounds Isolated from the Edible Plant Sisymbrium irio L. |
title_full_unstemmed | Biomarker Quantification, Spectroscopic, and Molecular Docking Studies of the Active Compounds Isolated from the Edible Plant Sisymbrium irio L. |
title_short | Biomarker Quantification, Spectroscopic, and Molecular Docking Studies of the Active Compounds Isolated from the Edible Plant Sisymbrium irio L. |
title_sort | biomarker quantification, spectroscopic, and molecular docking studies of the active compounds isolated from the edible plant sisymbrium irio l. |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10146147/ https://www.ncbi.nlm.nih.gov/pubmed/37111255 http://dx.doi.org/10.3390/ph16040498 |
work_keys_str_mv | AT almassaranishazam biomarkerquantificationspectroscopicandmoleculardockingstudiesoftheactivecompoundsisolatedfromtheedibleplantsisymbriumiriol AT aldurayhimlatifahs biomarkerquantificationspectroscopicandmoleculardockingstudiesoftheactivecompoundsisolatedfromtheedibleplantsisymbriumiriol AT alotaibiibtisama biomarkerquantificationspectroscopicandmoleculardockingstudiesoftheactivecompoundsisolatedfromtheedibleplantsisymbriumiriol AT abdelmageedmostafawm biomarkerquantificationspectroscopicandmoleculardockingstudiesoftheactivecompoundsisolatedfromtheedibleplantsisymbriumiriol AT rehmanmdtabish biomarkerquantificationspectroscopicandmoleculardockingstudiesoftheactivecompoundsisolatedfromtheedibleplantsisymbriumiriol AT basudanomera biomarkerquantificationspectroscopicandmoleculardockingstudiesoftheactivecompoundsisolatedfromtheedibleplantsisymbriumiriol AT abdelkadermageds biomarkerquantificationspectroscopicandmoleculardockingstudiesoftheactivecompoundsisolatedfromtheedibleplantsisymbriumiriol AT alajmimohamedf biomarkerquantificationspectroscopicandmoleculardockingstudiesoftheactivecompoundsisolatedfromtheedibleplantsisymbriumiriol AT abdelbarfatmam biomarkerquantificationspectroscopicandmoleculardockingstudiesoftheactivecompoundsisolatedfromtheedibleplantsisymbriumiriol AT alamperwez biomarkerquantificationspectroscopicandmoleculardockingstudiesoftheactivecompoundsisolatedfromtheedibleplantsisymbriumiriol AT altamimimaramm biomarkerquantificationspectroscopicandmoleculardockingstudiesoftheactivecompoundsisolatedfromtheedibleplantsisymbriumiriol AT elgamalalia biomarkerquantificationspectroscopicandmoleculardockingstudiesoftheactivecompoundsisolatedfromtheedibleplantsisymbriumiriol |