Cargando…
Improved Mask R-CNN Multi-Target Detection and Segmentation for Autonomous Driving in Complex Scenes
Vision-based target detection and segmentation has been an important research content for environment perception in autonomous driving, but the mainstream target detection and segmentation algorithms have the problems of low detection accuracy and poor mask segmentation quality for multi-target dete...
Autores principales: | Fang, Shuqi, Zhang, Bin, Hu, Jingyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10146362/ https://www.ncbi.nlm.nih.gov/pubmed/37112194 http://dx.doi.org/10.3390/s23083853 |
Ejemplares similares
-
Semantic segmentation of autonomous driving scenes based on multi-scale adaptive attention mechanism
por: Liu, Danping, et al.
Publicado: (2023) -
Comparison of Multi-Label U-Net and Mask R-CNN for panoramic radiograph segmentation to detect periodontitis
por: Widyaningrum, Rini, et al.
Publicado: (2022) -
Vision Measurement of Gear Pitting Under Different Scenes by Deep Mask R-CNN
por: Xi, Dejun, et al.
Publicado: (2020) -
CompleteInst: An Efficient Instance Segmentation Network for Missed Detection Scene of Autonomous Driving
por: Wang, Hai, et al.
Publicado: (2023) -
APESTNet with Mask R-CNN for Liver Tumor Segmentation and Classification
por: Balasubramanian, Prabhu Kavin, et al.
Publicado: (2023)