Cargando…
Assessment of Various Food Proteins as Structural Materials for Delivery of Hydrophobic Polyphenols Using a Novel Co-Precipitation Method
In this study, sodium caseinate (NaCas), soy protein isolate (SPI), and whey protein isolate (WPI) were used as structural materials for the delivery of rutin, naringenin, curcumin, hesperidin, and catechin. For each polyphenol, the protein solution was brought to alkaline pH, and then the polypheno...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10147046/ https://www.ncbi.nlm.nih.gov/pubmed/37110808 http://dx.doi.org/10.3390/molecules28083573 |
_version_ | 1785034722498314240 |
---|---|
author | Rashidinejad, Ali Nieuwkoop, Matthijs Singh, Harjinder Jameson, Geoffrey B. |
author_facet | Rashidinejad, Ali Nieuwkoop, Matthijs Singh, Harjinder Jameson, Geoffrey B. |
author_sort | Rashidinejad, Ali |
collection | PubMed |
description | In this study, sodium caseinate (NaCas), soy protein isolate (SPI), and whey protein isolate (WPI) were used as structural materials for the delivery of rutin, naringenin, curcumin, hesperidin, and catechin. For each polyphenol, the protein solution was brought to alkaline pH, and then the polyphenol and trehalose (as a cryo-protectant) were added. The mixtures were later acidified, and the co-precipitated products were lyophilized. Regardless of the type of protein used, the co-precipitation method exhibited relatively high entrapment efficiency and loading capacity for all five polyphenols. Several structural changes were seen in the scanning electron micrographs of all polyphenol–protein co-precipitates. This included a significant decrease in the crystallinity of the polyphenols, which was confirmed by X-ray diffraction analysis, where amorphous structures of rutin, naringenin, curcumin, hesperidin, and catechin were revealed after the treatment. Both the dispersibility and solubility of the lyophilized powders in water were improved dramatically (in some cases, >10-fold) after the treatment, with further improvements observed in these properties for the powders containing trehalose. Depending on the chemical structure and hydrophobicity of the tested polyphenols, there were differences observed in the degree and extent of the effect of the protein on different properties of the polyphenols. Overall, the findings of this study demonstrated that NaCas, WPI, and SPI can be used for the development of an efficient delivery system for hydrophobic polyphenols, which in turn can be incorporated into various functional foods or used as supplements in the nutraceutical industry. |
format | Online Article Text |
id | pubmed-10147046 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101470462023-04-29 Assessment of Various Food Proteins as Structural Materials for Delivery of Hydrophobic Polyphenols Using a Novel Co-Precipitation Method Rashidinejad, Ali Nieuwkoop, Matthijs Singh, Harjinder Jameson, Geoffrey B. Molecules Article In this study, sodium caseinate (NaCas), soy protein isolate (SPI), and whey protein isolate (WPI) were used as structural materials for the delivery of rutin, naringenin, curcumin, hesperidin, and catechin. For each polyphenol, the protein solution was brought to alkaline pH, and then the polyphenol and trehalose (as a cryo-protectant) were added. The mixtures were later acidified, and the co-precipitated products were lyophilized. Regardless of the type of protein used, the co-precipitation method exhibited relatively high entrapment efficiency and loading capacity for all five polyphenols. Several structural changes were seen in the scanning electron micrographs of all polyphenol–protein co-precipitates. This included a significant decrease in the crystallinity of the polyphenols, which was confirmed by X-ray diffraction analysis, where amorphous structures of rutin, naringenin, curcumin, hesperidin, and catechin were revealed after the treatment. Both the dispersibility and solubility of the lyophilized powders in water were improved dramatically (in some cases, >10-fold) after the treatment, with further improvements observed in these properties for the powders containing trehalose. Depending on the chemical structure and hydrophobicity of the tested polyphenols, there were differences observed in the degree and extent of the effect of the protein on different properties of the polyphenols. Overall, the findings of this study demonstrated that NaCas, WPI, and SPI can be used for the development of an efficient delivery system for hydrophobic polyphenols, which in turn can be incorporated into various functional foods or used as supplements in the nutraceutical industry. MDPI 2023-04-19 /pmc/articles/PMC10147046/ /pubmed/37110808 http://dx.doi.org/10.3390/molecules28083573 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rashidinejad, Ali Nieuwkoop, Matthijs Singh, Harjinder Jameson, Geoffrey B. Assessment of Various Food Proteins as Structural Materials for Delivery of Hydrophobic Polyphenols Using a Novel Co-Precipitation Method |
title | Assessment of Various Food Proteins as Structural Materials for Delivery of Hydrophobic Polyphenols Using a Novel Co-Precipitation Method |
title_full | Assessment of Various Food Proteins as Structural Materials for Delivery of Hydrophobic Polyphenols Using a Novel Co-Precipitation Method |
title_fullStr | Assessment of Various Food Proteins as Structural Materials for Delivery of Hydrophobic Polyphenols Using a Novel Co-Precipitation Method |
title_full_unstemmed | Assessment of Various Food Proteins as Structural Materials for Delivery of Hydrophobic Polyphenols Using a Novel Co-Precipitation Method |
title_short | Assessment of Various Food Proteins as Structural Materials for Delivery of Hydrophobic Polyphenols Using a Novel Co-Precipitation Method |
title_sort | assessment of various food proteins as structural materials for delivery of hydrophobic polyphenols using a novel co-precipitation method |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10147046/ https://www.ncbi.nlm.nih.gov/pubmed/37110808 http://dx.doi.org/10.3390/molecules28083573 |
work_keys_str_mv | AT rashidinejadali assessmentofvariousfoodproteinsasstructuralmaterialsfordeliveryofhydrophobicpolyphenolsusinganovelcoprecipitationmethod AT nieuwkoopmatthijs assessmentofvariousfoodproteinsasstructuralmaterialsfordeliveryofhydrophobicpolyphenolsusinganovelcoprecipitationmethod AT singhharjinder assessmentofvariousfoodproteinsasstructuralmaterialsfordeliveryofhydrophobicpolyphenolsusinganovelcoprecipitationmethod AT jamesongeoffreyb assessmentofvariousfoodproteinsasstructuralmaterialsfordeliveryofhydrophobicpolyphenolsusinganovelcoprecipitationmethod |