Cargando…

Iron-loaded deferiprone can support full hemoglobinization of cultured red blood cells

Iron, supplemented as iron-loaded transferrin (holotransferrin), is an essential nutrient in mammalian cell cultures, particularly for erythroid cultures. The high cost of human transferrin represents a challenge for large scale production of red blood cells (RBCs) and for cell therapies in general....

Descripción completa

Detalles Bibliográficos
Autores principales: Gallego-Murillo, Joan Sebastián, Yağcı, Nurcan, Pinho, Eduardo Machado, Wahl, Sebastian Aljoscha, van den Akker, Emile, von Lindern, Marieke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10147612/
https://www.ncbi.nlm.nih.gov/pubmed/37117329
http://dx.doi.org/10.1038/s41598-023-32706-1
Descripción
Sumario:Iron, supplemented as iron-loaded transferrin (holotransferrin), is an essential nutrient in mammalian cell cultures, particularly for erythroid cultures. The high cost of human transferrin represents a challenge for large scale production of red blood cells (RBCs) and for cell therapies in general. We evaluated the use of deferiprone, a cell membrane-permeable drug for iron chelation therapy, as an iron carrier for erythroid cultures. Iron-loaded deferiprone (Def(3)·Fe(3+), at 52 µmol/L) could eliminate the need for holotransferrin supplementation during in vitro expansion and differentiation of erythroblast cultures to produce large numbers of enucleated RBC. Only the first stage, when hematopoietic stem cells committed to erythroblasts, required holotransferrin supplementation. RBCs cultured in presence of Def(3)·Fe(3+) or holotransferrin (1000 µg/mL) were similar with respect to differentiation kinetics, expression of cell-surface markers CD235a and CD49d, hemoglobin content, and oxygen association/dissociation. Replacement of holotransferrin supplementation by Def(3)·Fe(3+) was also successful in cultures of myeloid cell lines (MOLM13, NB4, EOL1, K562, HL60, ML2). Thus, iron-loaded deferiprone can partially replace holotransferrin as a supplement in chemically defined cell culture medium. This holds promise for a significant decrease in medium cost and improved economic perspectives of the large scale production of red blood cells for transfusion purposes.