Cargando…
In Vitro Modeling of CD8 T Cell Exhaustion Enables CRISPR Screening to Reveal a Role for BHLHE40
Identifying novel molecular mechanisms of exhausted CD8 T cells (T(ex)) is a key goal of improving immunotherapy of cancer and other diseases. However, high-throughput interrogation of in vivo T(ex) can be costly and inefficient. In vitro models of T(ex) are easily customizable and quickly generate...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10153201/ https://www.ncbi.nlm.nih.gov/pubmed/37131713 http://dx.doi.org/10.1101/2023.04.17.537229 |
_version_ | 1785035888101687296 |
---|---|
author | Wu, Jennifer E. Manne, Sasikanth Ngiow, Shin Foong Baxter, Amy E. Huang, Hua Freilich, Elizabeth Clark, Megan L. Lee, Joanna H. Chen, Zeyu Khan, Omar Staupe, Ryan P. Huang, Yinghui J. Shi, Junwei Giles, Josephine R. Wherry, E. John |
author_facet | Wu, Jennifer E. Manne, Sasikanth Ngiow, Shin Foong Baxter, Amy E. Huang, Hua Freilich, Elizabeth Clark, Megan L. Lee, Joanna H. Chen, Zeyu Khan, Omar Staupe, Ryan P. Huang, Yinghui J. Shi, Junwei Giles, Josephine R. Wherry, E. John |
author_sort | Wu, Jennifer E. |
collection | PubMed |
description | Identifying novel molecular mechanisms of exhausted CD8 T cells (T(ex)) is a key goal of improving immunotherapy of cancer and other diseases. However, high-throughput interrogation of in vivo T(ex) can be costly and inefficient. In vitro models of T(ex) are easily customizable and quickly generate high cellular yield, offering an opportunity to perform CRISPR screening and other high-throughput assays. We established an in vitro model of chronic stimulation and benchmarked key phenotypic, functional, transcriptional, and epigenetic features against bona fide in vivo T(ex). We leveraged this model of in vitro chronic stimulation in combination with pooled CRISPR screening to uncover transcriptional regulators of T cell exhaustion. This approach identified several transcription factors, including BHLHE40. In vitro and in vivo validation defined a role for BHLHE40 in regulating a key differentiation checkpoint between progenitor and intermediate subsets of T(ex). By developing and benchmarking an in vitro model of T(ex), we demonstrate the utility of mechanistically annotated in vitro models of T(ex), in combination with high-throughput approaches, as a discovery pipeline to uncover novel T(ex) biology. |
format | Online Article Text |
id | pubmed-10153201 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-101532012023-05-03 In Vitro Modeling of CD8 T Cell Exhaustion Enables CRISPR Screening to Reveal a Role for BHLHE40 Wu, Jennifer E. Manne, Sasikanth Ngiow, Shin Foong Baxter, Amy E. Huang, Hua Freilich, Elizabeth Clark, Megan L. Lee, Joanna H. Chen, Zeyu Khan, Omar Staupe, Ryan P. Huang, Yinghui J. Shi, Junwei Giles, Josephine R. Wherry, E. John bioRxiv Article Identifying novel molecular mechanisms of exhausted CD8 T cells (T(ex)) is a key goal of improving immunotherapy of cancer and other diseases. However, high-throughput interrogation of in vivo T(ex) can be costly and inefficient. In vitro models of T(ex) are easily customizable and quickly generate high cellular yield, offering an opportunity to perform CRISPR screening and other high-throughput assays. We established an in vitro model of chronic stimulation and benchmarked key phenotypic, functional, transcriptional, and epigenetic features against bona fide in vivo T(ex). We leveraged this model of in vitro chronic stimulation in combination with pooled CRISPR screening to uncover transcriptional regulators of T cell exhaustion. This approach identified several transcription factors, including BHLHE40. In vitro and in vivo validation defined a role for BHLHE40 in regulating a key differentiation checkpoint between progenitor and intermediate subsets of T(ex). By developing and benchmarking an in vitro model of T(ex), we demonstrate the utility of mechanistically annotated in vitro models of T(ex), in combination with high-throughput approaches, as a discovery pipeline to uncover novel T(ex) biology. Cold Spring Harbor Laboratory 2023-04-17 /pmc/articles/PMC10153201/ /pubmed/37131713 http://dx.doi.org/10.1101/2023.04.17.537229 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Wu, Jennifer E. Manne, Sasikanth Ngiow, Shin Foong Baxter, Amy E. Huang, Hua Freilich, Elizabeth Clark, Megan L. Lee, Joanna H. Chen, Zeyu Khan, Omar Staupe, Ryan P. Huang, Yinghui J. Shi, Junwei Giles, Josephine R. Wherry, E. John In Vitro Modeling of CD8 T Cell Exhaustion Enables CRISPR Screening to Reveal a Role for BHLHE40 |
title | In Vitro Modeling of CD8 T Cell Exhaustion Enables CRISPR Screening to Reveal a Role for BHLHE40 |
title_full | In Vitro Modeling of CD8 T Cell Exhaustion Enables CRISPR Screening to Reveal a Role for BHLHE40 |
title_fullStr | In Vitro Modeling of CD8 T Cell Exhaustion Enables CRISPR Screening to Reveal a Role for BHLHE40 |
title_full_unstemmed | In Vitro Modeling of CD8 T Cell Exhaustion Enables CRISPR Screening to Reveal a Role for BHLHE40 |
title_short | In Vitro Modeling of CD8 T Cell Exhaustion Enables CRISPR Screening to Reveal a Role for BHLHE40 |
title_sort | in vitro modeling of cd8 t cell exhaustion enables crispr screening to reveal a role for bhlhe40 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10153201/ https://www.ncbi.nlm.nih.gov/pubmed/37131713 http://dx.doi.org/10.1101/2023.04.17.537229 |
work_keys_str_mv | AT wujennifere invitromodelingofcd8tcellexhaustionenablescrisprscreeningtorevealaroleforbhlhe40 AT mannesasikanth invitromodelingofcd8tcellexhaustionenablescrisprscreeningtorevealaroleforbhlhe40 AT ngiowshinfoong invitromodelingofcd8tcellexhaustionenablescrisprscreeningtorevealaroleforbhlhe40 AT baxteramye invitromodelingofcd8tcellexhaustionenablescrisprscreeningtorevealaroleforbhlhe40 AT huanghua invitromodelingofcd8tcellexhaustionenablescrisprscreeningtorevealaroleforbhlhe40 AT freilichelizabeth invitromodelingofcd8tcellexhaustionenablescrisprscreeningtorevealaroleforbhlhe40 AT clarkmeganl invitromodelingofcd8tcellexhaustionenablescrisprscreeningtorevealaroleforbhlhe40 AT leejoannah invitromodelingofcd8tcellexhaustionenablescrisprscreeningtorevealaroleforbhlhe40 AT chenzeyu invitromodelingofcd8tcellexhaustionenablescrisprscreeningtorevealaroleforbhlhe40 AT khanomar invitromodelingofcd8tcellexhaustionenablescrisprscreeningtorevealaroleforbhlhe40 AT stauperyanp invitromodelingofcd8tcellexhaustionenablescrisprscreeningtorevealaroleforbhlhe40 AT huangyinghuij invitromodelingofcd8tcellexhaustionenablescrisprscreeningtorevealaroleforbhlhe40 AT shijunwei invitromodelingofcd8tcellexhaustionenablescrisprscreeningtorevealaroleforbhlhe40 AT gilesjosephiner invitromodelingofcd8tcellexhaustionenablescrisprscreeningtorevealaroleforbhlhe40 AT wherryejohn invitromodelingofcd8tcellexhaustionenablescrisprscreeningtorevealaroleforbhlhe40 |