Cargando…

Unveiling an indole alkaloid diketopiperazine biosynthetic pathway that features a unique stereoisomerase and multifunctional methyltransferase

The 2,5-diketopiperazines are a prominent class of bioactive molecules. The nocardioazines are actinomycete natural products that feature a pyrroloindoline diketopiperazine scaffold composed of two D-tryptophan residues functionalized by N- and C-methylation, prenylation, and diannulation. Here we i...

Descripción completa

Detalles Bibliográficos
Autores principales: Deletti, Garrett, Green, Sajan D., Weber, Caleb, Patterson, Kristen N., Joshi, Swapnil S., Khopade, Tushar M., Coban, Mathew, Veek-Wilson, James, Caulfield, Thomas R., Viswanathan, Rajesh, Lane, Amy L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10156859/
https://www.ncbi.nlm.nih.gov/pubmed/37137876
http://dx.doi.org/10.1038/s41467-023-38168-3
_version_ 1785036628826259456
author Deletti, Garrett
Green, Sajan D.
Weber, Caleb
Patterson, Kristen N.
Joshi, Swapnil S.
Khopade, Tushar M.
Coban, Mathew
Veek-Wilson, James
Caulfield, Thomas R.
Viswanathan, Rajesh
Lane, Amy L.
author_facet Deletti, Garrett
Green, Sajan D.
Weber, Caleb
Patterson, Kristen N.
Joshi, Swapnil S.
Khopade, Tushar M.
Coban, Mathew
Veek-Wilson, James
Caulfield, Thomas R.
Viswanathan, Rajesh
Lane, Amy L.
author_sort Deletti, Garrett
collection PubMed
description The 2,5-diketopiperazines are a prominent class of bioactive molecules. The nocardioazines are actinomycete natural products that feature a pyrroloindoline diketopiperazine scaffold composed of two D-tryptophan residues functionalized by N- and C-methylation, prenylation, and diannulation. Here we identify and characterize the nocardioazine B biosynthetic pathway from marine Nocardiopsis sp. CMB-M0232 by using heterologous biotransformations, in vitro biochemical assays, and macromolecular modeling. Assembly of the cyclo-L-Trp-L-Trp diketopiperazine precursor is catalyzed by a cyclodipeptide synthase. A separate genomic locus encodes tailoring of this precursor and includes an aspartate/glutamate racemase homolog as an unusual D/L isomerase acting upon diketopiperazine substrates, a phytoene synthase-like prenyltransferase as the catalyst of indole alkaloid diketopiperazine prenylation, and a rare dual function methyltransferase as the catalyst of both N- and C-methylation as the final steps of nocardioazine B biosynthesis. The biosynthetic paradigms revealed herein showcase Nature’s molecular ingenuity and lay the foundation for diketopiperazine diversification via biocatalytic approaches.
format Online
Article
Text
id pubmed-10156859
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-101568592023-05-05 Unveiling an indole alkaloid diketopiperazine biosynthetic pathway that features a unique stereoisomerase and multifunctional methyltransferase Deletti, Garrett Green, Sajan D. Weber, Caleb Patterson, Kristen N. Joshi, Swapnil S. Khopade, Tushar M. Coban, Mathew Veek-Wilson, James Caulfield, Thomas R. Viswanathan, Rajesh Lane, Amy L. Nat Commun Article The 2,5-diketopiperazines are a prominent class of bioactive molecules. The nocardioazines are actinomycete natural products that feature a pyrroloindoline diketopiperazine scaffold composed of two D-tryptophan residues functionalized by N- and C-methylation, prenylation, and diannulation. Here we identify and characterize the nocardioazine B biosynthetic pathway from marine Nocardiopsis sp. CMB-M0232 by using heterologous biotransformations, in vitro biochemical assays, and macromolecular modeling. Assembly of the cyclo-L-Trp-L-Trp diketopiperazine precursor is catalyzed by a cyclodipeptide synthase. A separate genomic locus encodes tailoring of this precursor and includes an aspartate/glutamate racemase homolog as an unusual D/L isomerase acting upon diketopiperazine substrates, a phytoene synthase-like prenyltransferase as the catalyst of indole alkaloid diketopiperazine prenylation, and a rare dual function methyltransferase as the catalyst of both N- and C-methylation as the final steps of nocardioazine B biosynthesis. The biosynthetic paradigms revealed herein showcase Nature’s molecular ingenuity and lay the foundation for diketopiperazine diversification via biocatalytic approaches. Nature Publishing Group UK 2023-05-03 /pmc/articles/PMC10156859/ /pubmed/37137876 http://dx.doi.org/10.1038/s41467-023-38168-3 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Deletti, Garrett
Green, Sajan D.
Weber, Caleb
Patterson, Kristen N.
Joshi, Swapnil S.
Khopade, Tushar M.
Coban, Mathew
Veek-Wilson, James
Caulfield, Thomas R.
Viswanathan, Rajesh
Lane, Amy L.
Unveiling an indole alkaloid diketopiperazine biosynthetic pathway that features a unique stereoisomerase and multifunctional methyltransferase
title Unveiling an indole alkaloid diketopiperazine biosynthetic pathway that features a unique stereoisomerase and multifunctional methyltransferase
title_full Unveiling an indole alkaloid diketopiperazine biosynthetic pathway that features a unique stereoisomerase and multifunctional methyltransferase
title_fullStr Unveiling an indole alkaloid diketopiperazine biosynthetic pathway that features a unique stereoisomerase and multifunctional methyltransferase
title_full_unstemmed Unveiling an indole alkaloid diketopiperazine biosynthetic pathway that features a unique stereoisomerase and multifunctional methyltransferase
title_short Unveiling an indole alkaloid diketopiperazine biosynthetic pathway that features a unique stereoisomerase and multifunctional methyltransferase
title_sort unveiling an indole alkaloid diketopiperazine biosynthetic pathway that features a unique stereoisomerase and multifunctional methyltransferase
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10156859/
https://www.ncbi.nlm.nih.gov/pubmed/37137876
http://dx.doi.org/10.1038/s41467-023-38168-3
work_keys_str_mv AT delettigarrett unveilinganindolealkaloiddiketopiperazinebiosyntheticpathwaythatfeaturesauniquestereoisomeraseandmultifunctionalmethyltransferase
AT greensajand unveilinganindolealkaloiddiketopiperazinebiosyntheticpathwaythatfeaturesauniquestereoisomeraseandmultifunctionalmethyltransferase
AT webercaleb unveilinganindolealkaloiddiketopiperazinebiosyntheticpathwaythatfeaturesauniquestereoisomeraseandmultifunctionalmethyltransferase
AT pattersonkristenn unveilinganindolealkaloiddiketopiperazinebiosyntheticpathwaythatfeaturesauniquestereoisomeraseandmultifunctionalmethyltransferase
AT joshiswapnils unveilinganindolealkaloiddiketopiperazinebiosyntheticpathwaythatfeaturesauniquestereoisomeraseandmultifunctionalmethyltransferase
AT khopadetusharm unveilinganindolealkaloiddiketopiperazinebiosyntheticpathwaythatfeaturesauniquestereoisomeraseandmultifunctionalmethyltransferase
AT cobanmathew unveilinganindolealkaloiddiketopiperazinebiosyntheticpathwaythatfeaturesauniquestereoisomeraseandmultifunctionalmethyltransferase
AT veekwilsonjames unveilinganindolealkaloiddiketopiperazinebiosyntheticpathwaythatfeaturesauniquestereoisomeraseandmultifunctionalmethyltransferase
AT caulfieldthomasr unveilinganindolealkaloiddiketopiperazinebiosyntheticpathwaythatfeaturesauniquestereoisomeraseandmultifunctionalmethyltransferase
AT viswanathanrajesh unveilinganindolealkaloiddiketopiperazinebiosyntheticpathwaythatfeaturesauniquestereoisomeraseandmultifunctionalmethyltransferase
AT laneamyl unveilinganindolealkaloiddiketopiperazinebiosyntheticpathwaythatfeaturesauniquestereoisomeraseandmultifunctionalmethyltransferase