Cargando…

Development of Hyphenated Techniques and Network Identification Approaches for Biotransformational Evaluation of Promising Antitubercular N-pyrrolyl hydrazide-hydrazone in Isolated Rat Hepatocytes

Novel, rapid and precise RP-HPLC–DAD method was developed, validated and successfully applied for determination of metabolic changes of ethyl 5-(4-bromophenyl)-1-(3-(2-(2-hydroxybenzylidene)hydrazinyl)-3-oxopropyl)-2-methyl-1H-pyrrole-3-carboxylate (12b) in isolated rat hepatocytes. The analytes wer...

Descripción completa

Detalles Bibliográficos
Autores principales: Mateeva, Alexandrina, Kondeva-Burdina, Magdalena, Nedialkov, Paraskev, Peikova, Lily, Georgieva, Maya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10157554/
https://www.ncbi.nlm.nih.gov/pubmed/37255951
http://dx.doi.org/10.1007/s10337-023-04260-5
Descripción
Sumario:Novel, rapid and precise RP-HPLC–DAD method was developed, validated and successfully applied for determination of metabolic changes of ethyl 5-(4-bromophenyl)-1-(3-(2-(2-hydroxybenzylidene)hydrazinyl)-3-oxopropyl)-2-methyl-1H-pyrrole-3-carboxylate (12b) in isolated rat hepatocytes. The analytes were detected by a simple DAD detector at 279 nm wavelength. A single-step extraction method was implemented to enable fast purification and extraction from cellular culture, resulting in a complete recovery. Thereafter, the method was adequately transferred to a LC–MS system for identification of unknown products. Additionally, network metabolism evaluation was performed to predict the structures of major metabolites with their isotope mass through BioTransformer 3.0. The data from the LC–MS analysis and the online server were compared for comprehensive identification. The results indicated formation of four metabolic products, obtained through processes of hydrolysis (12 and b), hydroxylation in the structure 12b (M1) and O-dealkylation (M2).