Cargando…

Synthetic Ionizable Colloidal Drug Aggregates Enable Endosomal Disruption

Colloidal drug aggregates enable the design of drug‐rich nanoparticles; however, the efficacy of stabilized colloidal drug aggregates is limited by entrapment in the endo‐lysosomal pathway. Although ionizable drugs are used to elicit lysosomal escape, this approach is hindered by toxicity associated...

Descripción completa

Detalles Bibliográficos
Autores principales: Donders, Eric N., Slaughter, Kai V., Dank, Christian, Ganesh, Ahil N., Shoichet, Brian K., Lautens, Mark, Shoichet, Molly S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10161099/
https://www.ncbi.nlm.nih.gov/pubmed/36905240
http://dx.doi.org/10.1002/advs.202300311
_version_ 1785037420631162880
author Donders, Eric N.
Slaughter, Kai V.
Dank, Christian
Ganesh, Ahil N.
Shoichet, Brian K.
Lautens, Mark
Shoichet, Molly S.
author_facet Donders, Eric N.
Slaughter, Kai V.
Dank, Christian
Ganesh, Ahil N.
Shoichet, Brian K.
Lautens, Mark
Shoichet, Molly S.
author_sort Donders, Eric N.
collection PubMed
description Colloidal drug aggregates enable the design of drug‐rich nanoparticles; however, the efficacy of stabilized colloidal drug aggregates is limited by entrapment in the endo‐lysosomal pathway. Although ionizable drugs are used to elicit lysosomal escape, this approach is hindered by toxicity associated with phospholipidosis. It is hypothesized that tuning the pK (a) of the drug would enable endosomal disruption while avoiding phospholipidosis and minimizing toxicity. To test this idea, 12 analogs of the nonionizable colloidal drug fulvestrant are synthesized with ionizable groups to enable pH‐dependent endosomal disruption while maintaining bioactivity. Lipid‐stabilized fulvestrant analog colloids are endocytosed by cancer cells, and the pK (a) of these ionizable colloids influenced the mechanism of endosomal and lysosomal disruption. Four fulvestrant analogs—those with pK (a) values between 5.1 and 5.7—disrupted endo‐lysosomes without measurable phospholipidosis. Thus, by manipulating the pK (a) of colloid‐forming drugs, a tunable and generalizable strategy for endosomal disruption is established.
format Online
Article
Text
id pubmed-10161099
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-101610992023-05-06 Synthetic Ionizable Colloidal Drug Aggregates Enable Endosomal Disruption Donders, Eric N. Slaughter, Kai V. Dank, Christian Ganesh, Ahil N. Shoichet, Brian K. Lautens, Mark Shoichet, Molly S. Adv Sci (Weinh) Research Articles Colloidal drug aggregates enable the design of drug‐rich nanoparticles; however, the efficacy of stabilized colloidal drug aggregates is limited by entrapment in the endo‐lysosomal pathway. Although ionizable drugs are used to elicit lysosomal escape, this approach is hindered by toxicity associated with phospholipidosis. It is hypothesized that tuning the pK (a) of the drug would enable endosomal disruption while avoiding phospholipidosis and minimizing toxicity. To test this idea, 12 analogs of the nonionizable colloidal drug fulvestrant are synthesized with ionizable groups to enable pH‐dependent endosomal disruption while maintaining bioactivity. Lipid‐stabilized fulvestrant analog colloids are endocytosed by cancer cells, and the pK (a) of these ionizable colloids influenced the mechanism of endosomal and lysosomal disruption. Four fulvestrant analogs—those with pK (a) values between 5.1 and 5.7—disrupted endo‐lysosomes without measurable phospholipidosis. Thus, by manipulating the pK (a) of colloid‐forming drugs, a tunable and generalizable strategy for endosomal disruption is established. John Wiley and Sons Inc. 2023-03-11 /pmc/articles/PMC10161099/ /pubmed/36905240 http://dx.doi.org/10.1002/advs.202300311 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Donders, Eric N.
Slaughter, Kai V.
Dank, Christian
Ganesh, Ahil N.
Shoichet, Brian K.
Lautens, Mark
Shoichet, Molly S.
Synthetic Ionizable Colloidal Drug Aggregates Enable Endosomal Disruption
title Synthetic Ionizable Colloidal Drug Aggregates Enable Endosomal Disruption
title_full Synthetic Ionizable Colloidal Drug Aggregates Enable Endosomal Disruption
title_fullStr Synthetic Ionizable Colloidal Drug Aggregates Enable Endosomal Disruption
title_full_unstemmed Synthetic Ionizable Colloidal Drug Aggregates Enable Endosomal Disruption
title_short Synthetic Ionizable Colloidal Drug Aggregates Enable Endosomal Disruption
title_sort synthetic ionizable colloidal drug aggregates enable endosomal disruption
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10161099/
https://www.ncbi.nlm.nih.gov/pubmed/36905240
http://dx.doi.org/10.1002/advs.202300311
work_keys_str_mv AT dondersericn syntheticionizablecolloidaldrugaggregatesenableendosomaldisruption
AT slaughterkaiv syntheticionizablecolloidaldrugaggregatesenableendosomaldisruption
AT dankchristian syntheticionizablecolloidaldrugaggregatesenableendosomaldisruption
AT ganeshahiln syntheticionizablecolloidaldrugaggregatesenableendosomaldisruption
AT shoichetbriank syntheticionizablecolloidaldrugaggregatesenableendosomaldisruption
AT lautensmark syntheticionizablecolloidaldrugaggregatesenableendosomaldisruption
AT shoichetmollys syntheticionizablecolloidaldrugaggregatesenableendosomaldisruption