Cargando…
Synthetic Ionizable Colloidal Drug Aggregates Enable Endosomal Disruption
Colloidal drug aggregates enable the design of drug‐rich nanoparticles; however, the efficacy of stabilized colloidal drug aggregates is limited by entrapment in the endo‐lysosomal pathway. Although ionizable drugs are used to elicit lysosomal escape, this approach is hindered by toxicity associated...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10161099/ https://www.ncbi.nlm.nih.gov/pubmed/36905240 http://dx.doi.org/10.1002/advs.202300311 |
_version_ | 1785037420631162880 |
---|---|
author | Donders, Eric N. Slaughter, Kai V. Dank, Christian Ganesh, Ahil N. Shoichet, Brian K. Lautens, Mark Shoichet, Molly S. |
author_facet | Donders, Eric N. Slaughter, Kai V. Dank, Christian Ganesh, Ahil N. Shoichet, Brian K. Lautens, Mark Shoichet, Molly S. |
author_sort | Donders, Eric N. |
collection | PubMed |
description | Colloidal drug aggregates enable the design of drug‐rich nanoparticles; however, the efficacy of stabilized colloidal drug aggregates is limited by entrapment in the endo‐lysosomal pathway. Although ionizable drugs are used to elicit lysosomal escape, this approach is hindered by toxicity associated with phospholipidosis. It is hypothesized that tuning the pK (a) of the drug would enable endosomal disruption while avoiding phospholipidosis and minimizing toxicity. To test this idea, 12 analogs of the nonionizable colloidal drug fulvestrant are synthesized with ionizable groups to enable pH‐dependent endosomal disruption while maintaining bioactivity. Lipid‐stabilized fulvestrant analog colloids are endocytosed by cancer cells, and the pK (a) of these ionizable colloids influenced the mechanism of endosomal and lysosomal disruption. Four fulvestrant analogs—those with pK (a) values between 5.1 and 5.7—disrupted endo‐lysosomes without measurable phospholipidosis. Thus, by manipulating the pK (a) of colloid‐forming drugs, a tunable and generalizable strategy for endosomal disruption is established. |
format | Online Article Text |
id | pubmed-10161099 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-101610992023-05-06 Synthetic Ionizable Colloidal Drug Aggregates Enable Endosomal Disruption Donders, Eric N. Slaughter, Kai V. Dank, Christian Ganesh, Ahil N. Shoichet, Brian K. Lautens, Mark Shoichet, Molly S. Adv Sci (Weinh) Research Articles Colloidal drug aggregates enable the design of drug‐rich nanoparticles; however, the efficacy of stabilized colloidal drug aggregates is limited by entrapment in the endo‐lysosomal pathway. Although ionizable drugs are used to elicit lysosomal escape, this approach is hindered by toxicity associated with phospholipidosis. It is hypothesized that tuning the pK (a) of the drug would enable endosomal disruption while avoiding phospholipidosis and minimizing toxicity. To test this idea, 12 analogs of the nonionizable colloidal drug fulvestrant are synthesized with ionizable groups to enable pH‐dependent endosomal disruption while maintaining bioactivity. Lipid‐stabilized fulvestrant analog colloids are endocytosed by cancer cells, and the pK (a) of these ionizable colloids influenced the mechanism of endosomal and lysosomal disruption. Four fulvestrant analogs—those with pK (a) values between 5.1 and 5.7—disrupted endo‐lysosomes without measurable phospholipidosis. Thus, by manipulating the pK (a) of colloid‐forming drugs, a tunable and generalizable strategy for endosomal disruption is established. John Wiley and Sons Inc. 2023-03-11 /pmc/articles/PMC10161099/ /pubmed/36905240 http://dx.doi.org/10.1002/advs.202300311 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Donders, Eric N. Slaughter, Kai V. Dank, Christian Ganesh, Ahil N. Shoichet, Brian K. Lautens, Mark Shoichet, Molly S. Synthetic Ionizable Colloidal Drug Aggregates Enable Endosomal Disruption |
title | Synthetic Ionizable Colloidal Drug Aggregates Enable Endosomal Disruption |
title_full | Synthetic Ionizable Colloidal Drug Aggregates Enable Endosomal Disruption |
title_fullStr | Synthetic Ionizable Colloidal Drug Aggregates Enable Endosomal Disruption |
title_full_unstemmed | Synthetic Ionizable Colloidal Drug Aggregates Enable Endosomal Disruption |
title_short | Synthetic Ionizable Colloidal Drug Aggregates Enable Endosomal Disruption |
title_sort | synthetic ionizable colloidal drug aggregates enable endosomal disruption |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10161099/ https://www.ncbi.nlm.nih.gov/pubmed/36905240 http://dx.doi.org/10.1002/advs.202300311 |
work_keys_str_mv | AT dondersericn syntheticionizablecolloidaldrugaggregatesenableendosomaldisruption AT slaughterkaiv syntheticionizablecolloidaldrugaggregatesenableendosomaldisruption AT dankchristian syntheticionizablecolloidaldrugaggregatesenableendosomaldisruption AT ganeshahiln syntheticionizablecolloidaldrugaggregatesenableendosomaldisruption AT shoichetbriank syntheticionizablecolloidaldrugaggregatesenableendosomaldisruption AT lautensmark syntheticionizablecolloidaldrugaggregatesenableendosomaldisruption AT shoichetmollys syntheticionizablecolloidaldrugaggregatesenableendosomaldisruption |