Cargando…
EvoAug: improving generalization and interpretability of genomic deep neural networks with evolution-inspired data augmentations
Deep neural networks (DNNs) hold promise for functional genomics prediction, but their generalization capability may be limited by the amount of available data. To address this, we propose EvoAug, a suite of evolution-inspired augmentations that enhance the training of genomic DNNs by increasing gen...
Autores principales: | Lee, Nicholas Keone, Tang, Ziqi, Toneyan, Shushan, Koo, Peter K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10161416/ https://www.ncbi.nlm.nih.gov/pubmed/37143118 http://dx.doi.org/10.1186/s13059-023-02941-w |
Ejemplares similares
-
Interpreting Cis-Regulatory Interactions from Large-Scale Deep Neural Networks for Genomics
por: Toneyan, Shushan, et al.
Publicado: (2023) -
Correcting gradient-based interpretations of deep neural networks for genomics
por: Majdandzic, Antonio, et al.
Publicado: (2023) -
Reliable interpretability of biology-inspired deep neural networks
por: Esser-Skala, Wolfgang, et al.
Publicado: (2023) -
Medical Augmentation (Med-Aug) for Optimal Data Augmentation in Medical Deep Learning Networks
por: Lo, Justin, et al.
Publicado: (2021) -
Applications of evolutionary computing: EvoWorkshops 2007:EvoCOMNET, EvoFIN, EvoIASP, EvoINTERACTION, EvoMUSART, EvoSTOC, and EvoTransLog, Valencia, Spain, April 11-13, 2007, proceedings
por: Giacobini, Mario, et al.
Publicado: (2007)