Cargando…
Epiisopiloturine, an Alkaloid from Pilocarpus microphyllus, Attenuates LPS-Induced Neuroinflammation by Interfering in the TLR4/NF-κB-MAPK Signaling Pathway in Microglial Cells
Neuroinflammation is present in the pathophysiological mechanisms of several diseases that affect the central nervous system (CNS). Microglia have a prominent role in initiating and sustaining the inflammatory process. Epiisopiloturine (EPI) is an imidazole alkaloid obtained as a by-product of piloc...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10162877/ https://www.ncbi.nlm.nih.gov/pubmed/37151606 http://dx.doi.org/10.1155/2023/4752502 |
Sumario: | Neuroinflammation is present in the pathophysiological mechanisms of several diseases that affect the central nervous system (CNS). Microglia have a prominent role in initiating and sustaining the inflammatory process. Epiisopiloturine (EPI) is an imidazole alkaloid obtained as a by-product of pilocarpine extracted from Pilocarpus microphyllus (jaborandi) and has shown promising anti-inflammatory and antinociceptive properties. In the present study, we investigated the effects of EPI on the inflammatory response in microglial cells (BV-2 cells) induced by lipopolysaccharide (LPS) and explored putative underlying molecular mechanisms. Cell viability was not affected by EPI (1-100 μg/mL) as assessed by both LDH activity and the MTT test. Pretreatment with EPI (25, 50, and 100 μg/mL) significantly reduced the proinflammatory response induced by LPS, as observed by a decrease in nitrite oxide production and iNOS protein expression. EPI (25 μg/mL) reduced IL-6 and TNF-α production, by 40% and 34%, respectively. However, no changes were observed in the anti-inflammatory IL-10 production. Mechanistically, EPI inhibited the TLR4 expression and phosphorylation of NF-κB p65 and MAPKs (JNK and ERK1/2) induced by LPS, but no changes were observed in TREM2 receptor expression in LPS-stimulated cells. In conclusion, our data demonstrated the potent anti-inflammatory properties of EPI in microglial cells. These effects are associated with the reduction of TLR4 expression and inhibition of intracellular signaling cascades, including NF-κB and MAPKs (JNK and ERK1/2). |
---|