Cargando…
Model-based assessment of combination therapies – ranking of radiosensitizing agents in oncology
BACKGROUND: To increase the chances of finding efficacious anticancer drugs, improve development times and reduce costs, it is of interest to rank test compounds based on their potential for human use as early as possible in the drug development process. In this paper, we present a method for rankin...
Autores principales: | Baaz, Marcus, Cardilin, Tim, Lignet, Floriane, Zimmermann, Astrid, El Bawab, Samer, Gabrielsson, Johan, Jirstrand, Mats |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164338/ https://www.ncbi.nlm.nih.gov/pubmed/37149596 http://dx.doi.org/10.1186/s12885-023-10899-y |
Ejemplares similares
-
Modeling long-term tumor growth and kill after combinations of radiation and radiosensitizing agents
por: Cardilin, Tim, et al.
Publicado: (2019) -
Exposure-response modeling improves selection of radiation and radiosensitizer combinations
por: Cardilin, Tim, et al.
Publicado: (2021) -
Model‐Based Evaluation of Radiation and Radiosensitizing Agents in Oncology
por: Cardilin, Tim, et al.
Publicado: (2017) -
Optimized scaling of translational factors in oncology: from xenografts to RECIST
por: Baaz, Marcus, et al.
Publicado: (2022) -
Model‐based prediction of progression‐free survival for combination therapies in oncology
por: Baaz, Marcus, et al.
Publicado: (2023)