Cargando…

CAF-1 deposits newly synthesized histones during DNA replication using distinct mechanisms on the leading and lagging strands

During every cell cycle, both the genome and the associated chromatin must be accurately replicated. Chromatin Assembly Factor-1 (CAF-1) is a key regulator of chromatin replication, but how CAF-1 functions in relation to the DNA replication machinery is unknown. Here, we reveal that this crosstalk d...

Descripción completa

Detalles Bibliográficos
Autores principales: Rouillon, Clément, Eckhardt, Bruna V, Kollenstart, Leonie, Gruss, Fabian, Verkennis, Alexander E E, Rondeel, Inge, Krijger, Peter H L, Ricci, Giulia, Biran, Alva, van Laar, Theo, Delvaux de Fenffe, Charlotte M, Luppens, Georgiana, Albanese, Pascal, Sato, Koichi, Scheltema, Richard A, de Laat, Wouter, Knipscheer, Puck, Dekker, Nynke H, Groth, Anja, Mattiroli, Francesca
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164577/
https://www.ncbi.nlm.nih.gov/pubmed/36942484
http://dx.doi.org/10.1093/nar/gkad171
_version_ 1785038099161546752
author Rouillon, Clément
Eckhardt, Bruna V
Kollenstart, Leonie
Gruss, Fabian
Verkennis, Alexander E E
Rondeel, Inge
Krijger, Peter H L
Ricci, Giulia
Biran, Alva
van Laar, Theo
Delvaux de Fenffe, Charlotte M
Luppens, Georgiana
Albanese, Pascal
Sato, Koichi
Scheltema, Richard A
de Laat, Wouter
Knipscheer, Puck
Dekker, Nynke H
Groth, Anja
Mattiroli, Francesca
author_facet Rouillon, Clément
Eckhardt, Bruna V
Kollenstart, Leonie
Gruss, Fabian
Verkennis, Alexander E E
Rondeel, Inge
Krijger, Peter H L
Ricci, Giulia
Biran, Alva
van Laar, Theo
Delvaux de Fenffe, Charlotte M
Luppens, Georgiana
Albanese, Pascal
Sato, Koichi
Scheltema, Richard A
de Laat, Wouter
Knipscheer, Puck
Dekker, Nynke H
Groth, Anja
Mattiroli, Francesca
author_sort Rouillon, Clément
collection PubMed
description During every cell cycle, both the genome and the associated chromatin must be accurately replicated. Chromatin Assembly Factor-1 (CAF-1) is a key regulator of chromatin replication, but how CAF-1 functions in relation to the DNA replication machinery is unknown. Here, we reveal that this crosstalk differs between the leading and lagging strand at replication forks. Using biochemical reconstitutions, we show that DNA and histones promote CAF-1 recruitment to its binding partner PCNA and reveal that two CAF-1 complexes are required for efficient nucleosome assembly under these conditions. Remarkably, in the context of the replisome, CAF-1 competes with the leading strand DNA polymerase epsilon (Polϵ) for PCNA binding. However, CAF-1 does not affect the activity of the lagging strand DNA polymerase Delta (Polδ). Yet, in cells, CAF-1 deposits newly synthesized histones equally on both daughter strands. Thus, on the leading strand, chromatin assembly by CAF-1 cannot occur simultaneously to DNA synthesis, while on the lagging strand these processes may be coupled. We propose that these differences may facilitate distinct parental histone recycling mechanisms and accommodate the inherent asymmetry of DNA replication.
format Online
Article
Text
id pubmed-10164577
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-101645772023-05-08 CAF-1 deposits newly synthesized histones during DNA replication using distinct mechanisms on the leading and lagging strands Rouillon, Clément Eckhardt, Bruna V Kollenstart, Leonie Gruss, Fabian Verkennis, Alexander E E Rondeel, Inge Krijger, Peter H L Ricci, Giulia Biran, Alva van Laar, Theo Delvaux de Fenffe, Charlotte M Luppens, Georgiana Albanese, Pascal Sato, Koichi Scheltema, Richard A de Laat, Wouter Knipscheer, Puck Dekker, Nynke H Groth, Anja Mattiroli, Francesca Nucleic Acids Res Genome Integrity, Repair and Replication During every cell cycle, both the genome and the associated chromatin must be accurately replicated. Chromatin Assembly Factor-1 (CAF-1) is a key regulator of chromatin replication, but how CAF-1 functions in relation to the DNA replication machinery is unknown. Here, we reveal that this crosstalk differs between the leading and lagging strand at replication forks. Using biochemical reconstitutions, we show that DNA and histones promote CAF-1 recruitment to its binding partner PCNA and reveal that two CAF-1 complexes are required for efficient nucleosome assembly under these conditions. Remarkably, in the context of the replisome, CAF-1 competes with the leading strand DNA polymerase epsilon (Polϵ) for PCNA binding. However, CAF-1 does not affect the activity of the lagging strand DNA polymerase Delta (Polδ). Yet, in cells, CAF-1 deposits newly synthesized histones equally on both daughter strands. Thus, on the leading strand, chromatin assembly by CAF-1 cannot occur simultaneously to DNA synthesis, while on the lagging strand these processes may be coupled. We propose that these differences may facilitate distinct parental histone recycling mechanisms and accommodate the inherent asymmetry of DNA replication. Oxford University Press 2023-03-21 /pmc/articles/PMC10164577/ /pubmed/36942484 http://dx.doi.org/10.1093/nar/gkad171 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Genome Integrity, Repair and Replication
Rouillon, Clément
Eckhardt, Bruna V
Kollenstart, Leonie
Gruss, Fabian
Verkennis, Alexander E E
Rondeel, Inge
Krijger, Peter H L
Ricci, Giulia
Biran, Alva
van Laar, Theo
Delvaux de Fenffe, Charlotte M
Luppens, Georgiana
Albanese, Pascal
Sato, Koichi
Scheltema, Richard A
de Laat, Wouter
Knipscheer, Puck
Dekker, Nynke H
Groth, Anja
Mattiroli, Francesca
CAF-1 deposits newly synthesized histones during DNA replication using distinct mechanisms on the leading and lagging strands
title CAF-1 deposits newly synthesized histones during DNA replication using distinct mechanisms on the leading and lagging strands
title_full CAF-1 deposits newly synthesized histones during DNA replication using distinct mechanisms on the leading and lagging strands
title_fullStr CAF-1 deposits newly synthesized histones during DNA replication using distinct mechanisms on the leading and lagging strands
title_full_unstemmed CAF-1 deposits newly synthesized histones during DNA replication using distinct mechanisms on the leading and lagging strands
title_short CAF-1 deposits newly synthesized histones during DNA replication using distinct mechanisms on the leading and lagging strands
title_sort caf-1 deposits newly synthesized histones during dna replication using distinct mechanisms on the leading and lagging strands
topic Genome Integrity, Repair and Replication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164577/
https://www.ncbi.nlm.nih.gov/pubmed/36942484
http://dx.doi.org/10.1093/nar/gkad171
work_keys_str_mv AT rouillonclement caf1depositsnewlysynthesizedhistonesduringdnareplicationusingdistinctmechanismsontheleadingandlaggingstrands
AT eckhardtbrunav caf1depositsnewlysynthesizedhistonesduringdnareplicationusingdistinctmechanismsontheleadingandlaggingstrands
AT kollenstartleonie caf1depositsnewlysynthesizedhistonesduringdnareplicationusingdistinctmechanismsontheleadingandlaggingstrands
AT grussfabian caf1depositsnewlysynthesizedhistonesduringdnareplicationusingdistinctmechanismsontheleadingandlaggingstrands
AT verkennisalexanderee caf1depositsnewlysynthesizedhistonesduringdnareplicationusingdistinctmechanismsontheleadingandlaggingstrands
AT rondeelinge caf1depositsnewlysynthesizedhistonesduringdnareplicationusingdistinctmechanismsontheleadingandlaggingstrands
AT krijgerpeterhl caf1depositsnewlysynthesizedhistonesduringdnareplicationusingdistinctmechanismsontheleadingandlaggingstrands
AT riccigiulia caf1depositsnewlysynthesizedhistonesduringdnareplicationusingdistinctmechanismsontheleadingandlaggingstrands
AT biranalva caf1depositsnewlysynthesizedhistonesduringdnareplicationusingdistinctmechanismsontheleadingandlaggingstrands
AT vanlaartheo caf1depositsnewlysynthesizedhistonesduringdnareplicationusingdistinctmechanismsontheleadingandlaggingstrands
AT delvauxdefenffecharlottem caf1depositsnewlysynthesizedhistonesduringdnareplicationusingdistinctmechanismsontheleadingandlaggingstrands
AT luppensgeorgiana caf1depositsnewlysynthesizedhistonesduringdnareplicationusingdistinctmechanismsontheleadingandlaggingstrands
AT albanesepascal caf1depositsnewlysynthesizedhistonesduringdnareplicationusingdistinctmechanismsontheleadingandlaggingstrands
AT satokoichi caf1depositsnewlysynthesizedhistonesduringdnareplicationusingdistinctmechanismsontheleadingandlaggingstrands
AT scheltemaricharda caf1depositsnewlysynthesizedhistonesduringdnareplicationusingdistinctmechanismsontheleadingandlaggingstrands
AT delaatwouter caf1depositsnewlysynthesizedhistonesduringdnareplicationusingdistinctmechanismsontheleadingandlaggingstrands
AT knipscheerpuck caf1depositsnewlysynthesizedhistonesduringdnareplicationusingdistinctmechanismsontheleadingandlaggingstrands
AT dekkernynkeh caf1depositsnewlysynthesizedhistonesduringdnareplicationusingdistinctmechanismsontheleadingandlaggingstrands
AT grothanja caf1depositsnewlysynthesizedhistonesduringdnareplicationusingdistinctmechanismsontheleadingandlaggingstrands
AT mattirolifrancesca caf1depositsnewlysynthesizedhistonesduringdnareplicationusingdistinctmechanismsontheleadingandlaggingstrands