Cargando…

Gradient adaptive sampling and multiple temporal scale 3D CNNs for tactile object recognition

Tactile object recognition (TOR) is very important for the accurate perception of robots. Most of the TOR methods usually adopt uniform sampling strategy to randomly select tactile frames from a sequence of frames, which will lead to a dilemma problem, i.e., acquiring the tactile frames with high sa...

Descripción completa

Detalles Bibliográficos
Autores principales: Qian, Xiaoliang, Meng, Jia, Wang, Wei, Jiang, Liying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10169613/
https://www.ncbi.nlm.nih.gov/pubmed/37180284
http://dx.doi.org/10.3389/fnbot.2023.1159168
_version_ 1785039076508827648
author Qian, Xiaoliang
Meng, Jia
Wang, Wei
Jiang, Liying
author_facet Qian, Xiaoliang
Meng, Jia
Wang, Wei
Jiang, Liying
author_sort Qian, Xiaoliang
collection PubMed
description Tactile object recognition (TOR) is very important for the accurate perception of robots. Most of the TOR methods usually adopt uniform sampling strategy to randomly select tactile frames from a sequence of frames, which will lead to a dilemma problem, i.e., acquiring the tactile frames with high sampling rate will get lots of redundant data, while the low sampling rate will miss important information. In addition, the existing methods usually adopt single time scale to construct TOR model, which will induce that the generalization capability is not enough for processing the tactile data generated under different grasping speeds. To address the first problem, a novel gradient adaptive sampling (GAS) strategy is proposed, which can adaptively determine the sampling interval according to the importance of tactile data, therefore, the key information can be acquired as much as possible when the number of tactile frames is limited. To handle the second problem, a multiple temporal scale 3D convolutional neural networks (MTS-3DCNNs) model is proposed, which downsamples the input tactile frames with multiple temporal scales (MTSs) and extracts the MTS deep features, and the fused features have better generalization capability for recognizing the object grasped with different speed. Furthermore, the existing lightweight network ResNet3D-18 is modified to obtain a MR3D-18 network which can match the tactile data with smaller size and prevent the overfitting problem. The ablation studies show the effectiveness of GAS strategy, MTS-3DCNNs, and MR3D-18 networks. The comprehensive comparisons with advanced methods demonstrate that our method is SOTA on two benchmarks.
format Online
Article
Text
id pubmed-10169613
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-101696132023-05-11 Gradient adaptive sampling and multiple temporal scale 3D CNNs for tactile object recognition Qian, Xiaoliang Meng, Jia Wang, Wei Jiang, Liying Front Neurorobot Neuroscience Tactile object recognition (TOR) is very important for the accurate perception of robots. Most of the TOR methods usually adopt uniform sampling strategy to randomly select tactile frames from a sequence of frames, which will lead to a dilemma problem, i.e., acquiring the tactile frames with high sampling rate will get lots of redundant data, while the low sampling rate will miss important information. In addition, the existing methods usually adopt single time scale to construct TOR model, which will induce that the generalization capability is not enough for processing the tactile data generated under different grasping speeds. To address the first problem, a novel gradient adaptive sampling (GAS) strategy is proposed, which can adaptively determine the sampling interval according to the importance of tactile data, therefore, the key information can be acquired as much as possible when the number of tactile frames is limited. To handle the second problem, a multiple temporal scale 3D convolutional neural networks (MTS-3DCNNs) model is proposed, which downsamples the input tactile frames with multiple temporal scales (MTSs) and extracts the MTS deep features, and the fused features have better generalization capability for recognizing the object grasped with different speed. Furthermore, the existing lightweight network ResNet3D-18 is modified to obtain a MR3D-18 network which can match the tactile data with smaller size and prevent the overfitting problem. The ablation studies show the effectiveness of GAS strategy, MTS-3DCNNs, and MR3D-18 networks. The comprehensive comparisons with advanced methods demonstrate that our method is SOTA on two benchmarks. Frontiers Media S.A. 2023-04-26 /pmc/articles/PMC10169613/ /pubmed/37180284 http://dx.doi.org/10.3389/fnbot.2023.1159168 Text en Copyright © 2023 Qian, Meng, Wang and Jiang. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Qian, Xiaoliang
Meng, Jia
Wang, Wei
Jiang, Liying
Gradient adaptive sampling and multiple temporal scale 3D CNNs for tactile object recognition
title Gradient adaptive sampling and multiple temporal scale 3D CNNs for tactile object recognition
title_full Gradient adaptive sampling and multiple temporal scale 3D CNNs for tactile object recognition
title_fullStr Gradient adaptive sampling and multiple temporal scale 3D CNNs for tactile object recognition
title_full_unstemmed Gradient adaptive sampling and multiple temporal scale 3D CNNs for tactile object recognition
title_short Gradient adaptive sampling and multiple temporal scale 3D CNNs for tactile object recognition
title_sort gradient adaptive sampling and multiple temporal scale 3d cnns for tactile object recognition
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10169613/
https://www.ncbi.nlm.nih.gov/pubmed/37180284
http://dx.doi.org/10.3389/fnbot.2023.1159168
work_keys_str_mv AT qianxiaoliang gradientadaptivesamplingandmultipletemporalscale3dcnnsfortactileobjectrecognition
AT mengjia gradientadaptivesamplingandmultipletemporalscale3dcnnsfortactileobjectrecognition
AT wangwei gradientadaptivesamplingandmultipletemporalscale3dcnnsfortactileobjectrecognition
AT jiangliying gradientadaptivesamplingandmultipletemporalscale3dcnnsfortactileobjectrecognition