Cargando…
Gradient adaptive sampling and multiple temporal scale 3D CNNs for tactile object recognition
Tactile object recognition (TOR) is very important for the accurate perception of robots. Most of the TOR methods usually adopt uniform sampling strategy to randomly select tactile frames from a sequence of frames, which will lead to a dilemma problem, i.e., acquiring the tactile frames with high sa...
Autores principales: | Qian, Xiaoliang, Meng, Jia, Wang, Wei, Jiang, Liying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10169613/ https://www.ncbi.nlm.nih.gov/pubmed/37180284 http://dx.doi.org/10.3389/fnbot.2023.1159168 |
Ejemplares similares
-
Learning and recognition of tactile temporal sequences by mice and humans
por: Bale, Michael R, et al.
Publicado: (2017) -
Robust tactile object recognition in open-set scenarios using Gaussian prototype learning
por: Zheng, Wendong, et al.
Publicado: (2022) -
Asymmetric Functional Connectivity of the Contra- and Ipsilateral Secondary Somatosensory Cortex during Tactile Object Recognition
por: Yu, Yinghua, et al.
Publicado: (2018) -
Adaptive visual–tactile fusion recognition for robotic operation of multi-material system
por: Ding, Zihao, et al.
Publicado: (2023) -
Interpreting the decisions of CNNs via influence functions
por: Aamir, Aisha, et al.
Publicado: (2023)