Cargando…
Glycan Stability and Flexibility: Thermodynamic and Kinetic Characterization of Nonconventional Hydrogen Bonding in Lewis Antigens
[Image: see text] We provide evidence for CH-based nonconventional hydrogen bonds (H-bonds) for 10 Lewis antigens and two of their rhamnose analogues. We also characterize the thermodynamics and kinetics of the H-bonds in these molecules and present a plausible explanation for the presence of noncon...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10176581/ https://www.ncbi.nlm.nih.gov/pubmed/37099481 http://dx.doi.org/10.1021/jacs.2c13104 |
Sumario: | [Image: see text] We provide evidence for CH-based nonconventional hydrogen bonds (H-bonds) for 10 Lewis antigens and two of their rhamnose analogues. We also characterize the thermodynamics and kinetics of the H-bonds in these molecules and present a plausible explanation for the presence of nonconventional H-bonds in Lewis antigens. Using an alternative method to simultaneously fit a series of temperature-dependent fast exchange nuclear magnetic resonance (NMR) spectra, we determined that the H-bonded conformation is favored by ∼1 kcal/mol over the non-H-bonded conformation. Additionally, a comparison of temperature-dependent (13)C linewidths in various Lewis antigens and the two rhamnose analogues reveals H-bonds between the carbonyl oxygen of the N-acetyl group of N-acetylglucosamine and the OH2 group of galactose/fucose. The data presented herein provide insight into the contribution of nonconventional H-bonding to molecular structure and could therefore be used for the rational design of therapeutics. |
---|