Cargando…

Participation of FaTRAB1 Transcription Factor in the Regulation of FaMADS1 Involved in ABA-Dependent Ripening of Strawberry Fruit

Abscisic acid (ABA) plays a crucial role in regulating the ripening of non-climacteric strawberry fruit. In the present study, ABA was confirmed to promote strawberry ripening and induce the down-regulation of FaMADS1. The transient silence of FaMADS1 in strawberries promoted fruit ripening and indu...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Wenjing, Wei, Xiaopeng, Han, Xueyuan, Chen, Renchi, Xiao, Chaogeng, Zheng, Xiaojie, Mao, Linchun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10177999/
https://www.ncbi.nlm.nih.gov/pubmed/37174341
http://dx.doi.org/10.3390/foods12091802
Descripción
Sumario:Abscisic acid (ABA) plays a crucial role in regulating the ripening of non-climacteric strawberry fruit. In the present study, ABA was confirmed to promote strawberry ripening and induce the down-regulation of FaMADS1. The transient silence of FaMADS1 in strawberries promoted fruit ripening and induced the content of anthocyanin and soluble pectin but reduced firmness and protopectin through a tobacco rattle virus-induced gene silencing technique. In parallel with the accelerated ripening, the genes were significantly induced in the transiently modified fruit, including anthocyanin-related PAL6, C4H, 4CL, DFR, and UFGT, softening-related PL and XTH, and aroma-related QR and AAT2. In addition, the interaction between FaMADS1 and ABA-related transcription factors was researched. Yeast one-hybrid analysis indicated that the FaMADS1 promoter could interact with FaABI5-5, FaTRAB1, and FaABI5. Furthermore, dual-luciferase assay suggested that FaTRAB1 could actively bind with the FaMADS1 promoter, resulting in the decreased expression of FaMADS1. In brief, these results suggest that the ABA-dependent ripening of strawberry fruit was probably inhibited through inhibiting FaMADS1 expression by the active binding of transcript FaTRAB1 with the FaMADS1 promoter.