Cargando…
Evolution-strengthened knowledge graph enables predicting the targetability and druggability of genes
Identifying promising targets is a critical step in modern drug discovery, with causative genes of diseases that are an important source of successful targets. Previous studies have found that the pathogeneses of various diseases are closely related to the evolutionary events of organisms. According...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10178923/ https://www.ncbi.nlm.nih.gov/pubmed/37188275 http://dx.doi.org/10.1093/pnasnexus/pgad147 |
_version_ | 1785040974498496512 |
---|---|
author | Quan, Yuan Xiong, Zhan-Kun Zhang, Ke-Xin Zhang, Qing-Ye Zhang, Wen Zhang, Hong-Yu |
author_facet | Quan, Yuan Xiong, Zhan-Kun Zhang, Ke-Xin Zhang, Qing-Ye Zhang, Wen Zhang, Hong-Yu |
author_sort | Quan, Yuan |
collection | PubMed |
description | Identifying promising targets is a critical step in modern drug discovery, with causative genes of diseases that are an important source of successful targets. Previous studies have found that the pathogeneses of various diseases are closely related to the evolutionary events of organisms. Accordingly, evolutionary knowledge can facilitate the prediction of causative genes and further accelerate target identification. With the development of modern biotechnology, massive biomedical data have been accumulated, and knowledge graphs (KGs) have emerged as a powerful approach for integrating and utilizing vast amounts of data. In this study, we constructed an evolution-strengthened knowledge graph (ESKG) and validated applications of ESKG in the identification of causative genes. More importantly, we developed an ESKG-based machine learning model named GraphEvo, which can effectively predict the targetability and the druggability of genes. We further investigated the explainability of the ESKG in druggability prediction by dissecting the evolutionary hallmarks of successful targets. Our study highlights the importance of evolutionary knowledge in biomedical research and demonstrates the potential power of ESKG in promising target identification. The data set of ESKG and the code of GraphEvo can be downloaded from https://github.com/Zhankun-Xiong/GraphEvo. |
format | Online Article Text |
id | pubmed-10178923 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-101789232023-05-13 Evolution-strengthened knowledge graph enables predicting the targetability and druggability of genes Quan, Yuan Xiong, Zhan-Kun Zhang, Ke-Xin Zhang, Qing-Ye Zhang, Wen Zhang, Hong-Yu PNAS Nexus Biological, Health, and Medical Sciences Identifying promising targets is a critical step in modern drug discovery, with causative genes of diseases that are an important source of successful targets. Previous studies have found that the pathogeneses of various diseases are closely related to the evolutionary events of organisms. Accordingly, evolutionary knowledge can facilitate the prediction of causative genes and further accelerate target identification. With the development of modern biotechnology, massive biomedical data have been accumulated, and knowledge graphs (KGs) have emerged as a powerful approach for integrating and utilizing vast amounts of data. In this study, we constructed an evolution-strengthened knowledge graph (ESKG) and validated applications of ESKG in the identification of causative genes. More importantly, we developed an ESKG-based machine learning model named GraphEvo, which can effectively predict the targetability and the druggability of genes. We further investigated the explainability of the ESKG in druggability prediction by dissecting the evolutionary hallmarks of successful targets. Our study highlights the importance of evolutionary knowledge in biomedical research and demonstrates the potential power of ESKG in promising target identification. The data set of ESKG and the code of GraphEvo can be downloaded from https://github.com/Zhankun-Xiong/GraphEvo. Oxford University Press 2023-04-26 /pmc/articles/PMC10178923/ /pubmed/37188275 http://dx.doi.org/10.1093/pnasnexus/pgad147 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of National Academy of Sciences. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Biological, Health, and Medical Sciences Quan, Yuan Xiong, Zhan-Kun Zhang, Ke-Xin Zhang, Qing-Ye Zhang, Wen Zhang, Hong-Yu Evolution-strengthened knowledge graph enables predicting the targetability and druggability of genes |
title | Evolution-strengthened knowledge graph enables predicting the targetability and druggability of genes |
title_full | Evolution-strengthened knowledge graph enables predicting the targetability and druggability of genes |
title_fullStr | Evolution-strengthened knowledge graph enables predicting the targetability and druggability of genes |
title_full_unstemmed | Evolution-strengthened knowledge graph enables predicting the targetability and druggability of genes |
title_short | Evolution-strengthened knowledge graph enables predicting the targetability and druggability of genes |
title_sort | evolution-strengthened knowledge graph enables predicting the targetability and druggability of genes |
topic | Biological, Health, and Medical Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10178923/ https://www.ncbi.nlm.nih.gov/pubmed/37188275 http://dx.doi.org/10.1093/pnasnexus/pgad147 |
work_keys_str_mv | AT quanyuan evolutionstrengthenedknowledgegraphenablespredictingthetargetabilityanddruggabilityofgenes AT xiongzhankun evolutionstrengthenedknowledgegraphenablespredictingthetargetabilityanddruggabilityofgenes AT zhangkexin evolutionstrengthenedknowledgegraphenablespredictingthetargetabilityanddruggabilityofgenes AT zhangqingye evolutionstrengthenedknowledgegraphenablespredictingthetargetabilityanddruggabilityofgenes AT zhangwen evolutionstrengthenedknowledgegraphenablespredictingthetargetabilityanddruggabilityofgenes AT zhanghongyu evolutionstrengthenedknowledgegraphenablespredictingthetargetabilityanddruggabilityofgenes |