Cargando…
A Predictive Model of Adaptive Resistance to BRAF/MEK Inhibitors in Melanoma
The adaptive acquisition of resistance to BRAF and MEK inhibitor-based therapy is a common feature of melanoma cells and contributes to poor patient treatment outcomes. Leveraging insights from a proteomic study and publicly available transcriptomic data, we evaluated the predictive capacity of a ge...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10178962/ https://www.ncbi.nlm.nih.gov/pubmed/37176114 http://dx.doi.org/10.3390/ijms24098407 |
_version_ | 1785040983747985408 |
---|---|
author | Ruiz, Emmanuelle M. Alhassan, Solomon A. Errami, Youssef Abd Elmageed, Zakaria Y. Fang, Jennifer S. Wang, Guangdi Brooks, Margaret A. Abi-Rached, Joe A. Kandil, Emad Zerfaoui, Mourad |
author_facet | Ruiz, Emmanuelle M. Alhassan, Solomon A. Errami, Youssef Abd Elmageed, Zakaria Y. Fang, Jennifer S. Wang, Guangdi Brooks, Margaret A. Abi-Rached, Joe A. Kandil, Emad Zerfaoui, Mourad |
author_sort | Ruiz, Emmanuelle M. |
collection | PubMed |
description | The adaptive acquisition of resistance to BRAF and MEK inhibitor-based therapy is a common feature of melanoma cells and contributes to poor patient treatment outcomes. Leveraging insights from a proteomic study and publicly available transcriptomic data, we evaluated the predictive capacity of a gene panel corresponding to proteins differentially abundant between treatment-sensitive and treatment-resistant cell lines, deciphering predictors of treatment resistance and potential resistance mechanisms to BRAF/MEK inhibitor therapy in patient biopsy samples. From our analysis, a 13-gene signature panel, in both test and validation datasets, could identify treatment-resistant or progressed melanoma cases with an accuracy and sensitivity of over 70%. The dysregulation of HMOX1, ICAM, MMP2, and SPARC defined a BRAF/MEK treatment-resistant landscape, with resistant cases showing a >2-fold risk of expression of these genes. Furthermore, we utilized a combination of functional enrichment- and gene expression-derived scores to model and identify pathways, such as HMOX1-mediated mitochondrial stress response, as potential key drivers of the emergence of a BRAF/MEK inhibitor-resistant state in melanoma cells. Overall, our results highlight the utility of these genes in predicting treatment outcomes and the underlying mechanisms that can be targeted to reduce the development of resistance to BRAF/MEK targeted therapy. |
format | Online Article Text |
id | pubmed-10178962 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101789622023-05-13 A Predictive Model of Adaptive Resistance to BRAF/MEK Inhibitors in Melanoma Ruiz, Emmanuelle M. Alhassan, Solomon A. Errami, Youssef Abd Elmageed, Zakaria Y. Fang, Jennifer S. Wang, Guangdi Brooks, Margaret A. Abi-Rached, Joe A. Kandil, Emad Zerfaoui, Mourad Int J Mol Sci Article The adaptive acquisition of resistance to BRAF and MEK inhibitor-based therapy is a common feature of melanoma cells and contributes to poor patient treatment outcomes. Leveraging insights from a proteomic study and publicly available transcriptomic data, we evaluated the predictive capacity of a gene panel corresponding to proteins differentially abundant between treatment-sensitive and treatment-resistant cell lines, deciphering predictors of treatment resistance and potential resistance mechanisms to BRAF/MEK inhibitor therapy in patient biopsy samples. From our analysis, a 13-gene signature panel, in both test and validation datasets, could identify treatment-resistant or progressed melanoma cases with an accuracy and sensitivity of over 70%. The dysregulation of HMOX1, ICAM, MMP2, and SPARC defined a BRAF/MEK treatment-resistant landscape, with resistant cases showing a >2-fold risk of expression of these genes. Furthermore, we utilized a combination of functional enrichment- and gene expression-derived scores to model and identify pathways, such as HMOX1-mediated mitochondrial stress response, as potential key drivers of the emergence of a BRAF/MEK inhibitor-resistant state in melanoma cells. Overall, our results highlight the utility of these genes in predicting treatment outcomes and the underlying mechanisms that can be targeted to reduce the development of resistance to BRAF/MEK targeted therapy. MDPI 2023-05-07 /pmc/articles/PMC10178962/ /pubmed/37176114 http://dx.doi.org/10.3390/ijms24098407 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ruiz, Emmanuelle M. Alhassan, Solomon A. Errami, Youssef Abd Elmageed, Zakaria Y. Fang, Jennifer S. Wang, Guangdi Brooks, Margaret A. Abi-Rached, Joe A. Kandil, Emad Zerfaoui, Mourad A Predictive Model of Adaptive Resistance to BRAF/MEK Inhibitors in Melanoma |
title | A Predictive Model of Adaptive Resistance to BRAF/MEK Inhibitors in Melanoma |
title_full | A Predictive Model of Adaptive Resistance to BRAF/MEK Inhibitors in Melanoma |
title_fullStr | A Predictive Model of Adaptive Resistance to BRAF/MEK Inhibitors in Melanoma |
title_full_unstemmed | A Predictive Model of Adaptive Resistance to BRAF/MEK Inhibitors in Melanoma |
title_short | A Predictive Model of Adaptive Resistance to BRAF/MEK Inhibitors in Melanoma |
title_sort | predictive model of adaptive resistance to braf/mek inhibitors in melanoma |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10178962/ https://www.ncbi.nlm.nih.gov/pubmed/37176114 http://dx.doi.org/10.3390/ijms24098407 |
work_keys_str_mv | AT ruizemmanuellem apredictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma AT alhassansolomona apredictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma AT erramiyoussef apredictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma AT abdelmageedzakariay apredictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma AT fangjennifers apredictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma AT wangguangdi apredictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma AT brooksmargareta apredictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma AT abirachedjoea apredictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma AT kandilemad apredictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma AT zerfaouimourad apredictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma AT ruizemmanuellem predictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma AT alhassansolomona predictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma AT erramiyoussef predictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma AT abdelmageedzakariay predictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma AT fangjennifers predictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma AT wangguangdi predictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma AT brooksmargareta predictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma AT abirachedjoea predictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma AT kandilemad predictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma AT zerfaouimourad predictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma |