Cargando…

A Predictive Model of Adaptive Resistance to BRAF/MEK Inhibitors in Melanoma

The adaptive acquisition of resistance to BRAF and MEK inhibitor-based therapy is a common feature of melanoma cells and contributes to poor patient treatment outcomes. Leveraging insights from a proteomic study and publicly available transcriptomic data, we evaluated the predictive capacity of a ge...

Descripción completa

Detalles Bibliográficos
Autores principales: Ruiz, Emmanuelle M., Alhassan, Solomon A., Errami, Youssef, Abd Elmageed, Zakaria Y., Fang, Jennifer S., Wang, Guangdi, Brooks, Margaret A., Abi-Rached, Joe A., Kandil, Emad, Zerfaoui, Mourad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10178962/
https://www.ncbi.nlm.nih.gov/pubmed/37176114
http://dx.doi.org/10.3390/ijms24098407
_version_ 1785040983747985408
author Ruiz, Emmanuelle M.
Alhassan, Solomon A.
Errami, Youssef
Abd Elmageed, Zakaria Y.
Fang, Jennifer S.
Wang, Guangdi
Brooks, Margaret A.
Abi-Rached, Joe A.
Kandil, Emad
Zerfaoui, Mourad
author_facet Ruiz, Emmanuelle M.
Alhassan, Solomon A.
Errami, Youssef
Abd Elmageed, Zakaria Y.
Fang, Jennifer S.
Wang, Guangdi
Brooks, Margaret A.
Abi-Rached, Joe A.
Kandil, Emad
Zerfaoui, Mourad
author_sort Ruiz, Emmanuelle M.
collection PubMed
description The adaptive acquisition of resistance to BRAF and MEK inhibitor-based therapy is a common feature of melanoma cells and contributes to poor patient treatment outcomes. Leveraging insights from a proteomic study and publicly available transcriptomic data, we evaluated the predictive capacity of a gene panel corresponding to proteins differentially abundant between treatment-sensitive and treatment-resistant cell lines, deciphering predictors of treatment resistance and potential resistance mechanisms to BRAF/MEK inhibitor therapy in patient biopsy samples. From our analysis, a 13-gene signature panel, in both test and validation datasets, could identify treatment-resistant or progressed melanoma cases with an accuracy and sensitivity of over 70%. The dysregulation of HMOX1, ICAM, MMP2, and SPARC defined a BRAF/MEK treatment-resistant landscape, with resistant cases showing a >2-fold risk of expression of these genes. Furthermore, we utilized a combination of functional enrichment- and gene expression-derived scores to model and identify pathways, such as HMOX1-mediated mitochondrial stress response, as potential key drivers of the emergence of a BRAF/MEK inhibitor-resistant state in melanoma cells. Overall, our results highlight the utility of these genes in predicting treatment outcomes and the underlying mechanisms that can be targeted to reduce the development of resistance to BRAF/MEK targeted therapy.
format Online
Article
Text
id pubmed-10178962
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-101789622023-05-13 A Predictive Model of Adaptive Resistance to BRAF/MEK Inhibitors in Melanoma Ruiz, Emmanuelle M. Alhassan, Solomon A. Errami, Youssef Abd Elmageed, Zakaria Y. Fang, Jennifer S. Wang, Guangdi Brooks, Margaret A. Abi-Rached, Joe A. Kandil, Emad Zerfaoui, Mourad Int J Mol Sci Article The adaptive acquisition of resistance to BRAF and MEK inhibitor-based therapy is a common feature of melanoma cells and contributes to poor patient treatment outcomes. Leveraging insights from a proteomic study and publicly available transcriptomic data, we evaluated the predictive capacity of a gene panel corresponding to proteins differentially abundant between treatment-sensitive and treatment-resistant cell lines, deciphering predictors of treatment resistance and potential resistance mechanisms to BRAF/MEK inhibitor therapy in patient biopsy samples. From our analysis, a 13-gene signature panel, in both test and validation datasets, could identify treatment-resistant or progressed melanoma cases with an accuracy and sensitivity of over 70%. The dysregulation of HMOX1, ICAM, MMP2, and SPARC defined a BRAF/MEK treatment-resistant landscape, with resistant cases showing a >2-fold risk of expression of these genes. Furthermore, we utilized a combination of functional enrichment- and gene expression-derived scores to model and identify pathways, such as HMOX1-mediated mitochondrial stress response, as potential key drivers of the emergence of a BRAF/MEK inhibitor-resistant state in melanoma cells. Overall, our results highlight the utility of these genes in predicting treatment outcomes and the underlying mechanisms that can be targeted to reduce the development of resistance to BRAF/MEK targeted therapy. MDPI 2023-05-07 /pmc/articles/PMC10178962/ /pubmed/37176114 http://dx.doi.org/10.3390/ijms24098407 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Ruiz, Emmanuelle M.
Alhassan, Solomon A.
Errami, Youssef
Abd Elmageed, Zakaria Y.
Fang, Jennifer S.
Wang, Guangdi
Brooks, Margaret A.
Abi-Rached, Joe A.
Kandil, Emad
Zerfaoui, Mourad
A Predictive Model of Adaptive Resistance to BRAF/MEK Inhibitors in Melanoma
title A Predictive Model of Adaptive Resistance to BRAF/MEK Inhibitors in Melanoma
title_full A Predictive Model of Adaptive Resistance to BRAF/MEK Inhibitors in Melanoma
title_fullStr A Predictive Model of Adaptive Resistance to BRAF/MEK Inhibitors in Melanoma
title_full_unstemmed A Predictive Model of Adaptive Resistance to BRAF/MEK Inhibitors in Melanoma
title_short A Predictive Model of Adaptive Resistance to BRAF/MEK Inhibitors in Melanoma
title_sort predictive model of adaptive resistance to braf/mek inhibitors in melanoma
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10178962/
https://www.ncbi.nlm.nih.gov/pubmed/37176114
http://dx.doi.org/10.3390/ijms24098407
work_keys_str_mv AT ruizemmanuellem apredictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma
AT alhassansolomona apredictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma
AT erramiyoussef apredictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma
AT abdelmageedzakariay apredictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma
AT fangjennifers apredictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma
AT wangguangdi apredictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma
AT brooksmargareta apredictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma
AT abirachedjoea apredictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma
AT kandilemad apredictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma
AT zerfaouimourad apredictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma
AT ruizemmanuellem predictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma
AT alhassansolomona predictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma
AT erramiyoussef predictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma
AT abdelmageedzakariay predictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma
AT fangjennifers predictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma
AT wangguangdi predictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma
AT brooksmargareta predictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma
AT abirachedjoea predictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma
AT kandilemad predictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma
AT zerfaouimourad predictivemodelofadaptiveresistancetobrafmekinhibitorsinmelanoma