Cargando…
Thiocholine-Mediated One-Pot Peptide Ligation and Desulfurization
Thiol catalysts are essential in native chemical ligation (NCL) to increase the reaction efficiency. In this paper, we report the use of thiocholine in chemical protein synthesis, including NCL-based peptide ligation and metal-free desulfurization. Evaluation of thiocholine peptide thioester in term...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179797/ https://www.ncbi.nlm.nih.gov/pubmed/37175065 http://dx.doi.org/10.3390/molecules28093655 |
Sumario: | Thiol catalysts are essential in native chemical ligation (NCL) to increase the reaction efficiency. In this paper, we report the use of thiocholine in chemical protein synthesis, including NCL-based peptide ligation and metal-free desulfurization. Evaluation of thiocholine peptide thioester in terms of NCL and hydrolysis kinetics revealed its practical utility, which was comparable to that of other alkyl thioesters. Importantly, thiocholine showed better reactivity as a thiol additive in desulfurization, which is often used in chemical protein synthesis to convert Cys residues to more abundant Ala residues. Finally, we achieved chemical synthesis of two differently methylated histone H3 proteins via one-pot NCL and desulfurization with thiocholine. |
---|