Cargando…
MMST: A Multi-Modal Ground-Based Cloud Image Classification Method
In recent years, convolutional neural networks have been in the leading position for ground-based cloud image classification tasks. However, this approach introduces too much inductive bias, fails to perform global modeling, and gradually tends to saturate the performance effect of convolutional neu...
Autores principales: | Wei, Liang, Zhu, Tingting, Guo, Yiren, Ni, Chao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10180870/ https://www.ncbi.nlm.nih.gov/pubmed/37177425 http://dx.doi.org/10.3390/s23094222 |
Ejemplares similares
-
Auto-Modal: Air-Quality Index Forecasting with Modal Decomposition Attention
por: Guo, Yiren, et al.
Publicado: (2022) -
CloudDenseNet: Lightweight Ground-Based Cloud Classification Method for Large-Scale Datasets Based on Reconstructed DenseNet
por: Li, Sheng, et al.
Publicado: (2023) -
Multi-modal imaging and anatomic classification of the white dot syndromes
por: Raven, Meisha L., et al.
Publicado: (2017) -
Automatic Classification of Early Parkinson's Disease with Multi-Modal MR Imaging
por: Long, Dan, et al.
Publicado: (2012) -
TransMed: Transformers Advance Multi-Modal Medical Image Classification
por: Dai, Yin, et al.
Publicado: (2021)