Cargando…
Centre assessment grades in 2020: a natural experiment for investigating bias in teacher judgements
The COVID-19 pandemic meant that, in 2020, students in England were unable to sit their examinations and instead received predicted grades, or “centre assessment grades” (CAGs), from their teachers to allow them to progress. Using the Grading and Admissions Data for England (GRADE) dataset for stude...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10184100/ https://www.ncbi.nlm.nih.gov/pubmed/37363803 http://dx.doi.org/10.1007/s42001-023-00206-x |
_version_ | 1785042099046973440 |
---|---|
author | Magowan, Louis |
author_facet | Magowan, Louis |
author_sort | Magowan, Louis |
collection | PubMed |
description | The COVID-19 pandemic meant that, in 2020, students in England were unable to sit their examinations and instead received predicted grades, or “centre assessment grades” (CAGs), from their teachers to allow them to progress. Using the Grading and Admissions Data for England (GRADE) dataset for students from 2018 to 2020, this study treats the use of CAGs as a natural experiment for causally understanding how teacher judgements of academic ability may be biased according to the demographic and socio-economic characteristics of their students. A variety of machine learning models were trained on the 2018–19 data and then used to generate predictions for what the 2020 students were likely to have received had their examinations taken place as usual. The differences between these predictions and the CAGs that students received were calculated and then averaged across students’ different characteristics, revealing what the treatment effects of the use of CAGs were likely to have been for different types of students. No evidence of absolute negative bias against students of any demographic or socio-economic characteristic was found, with all groups of students having received higher CAGs than the grades they were likely to have received had they sat their examinations. Some evidence for relative bias was found, with consistent, but insubstantial differences being observed in the treatment effects of certain groups. However, when higher-order interactions of student characteristics were considered, these differences became more substantial. Intersectional perspectives which emphasise interactions and sub-group differences should be used more widely within quantitative educational equalities research. |
format | Online Article Text |
id | pubmed-10184100 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Springer Nature Singapore |
record_format | MEDLINE/PubMed |
spelling | pubmed-101841002023-05-16 Centre assessment grades in 2020: a natural experiment for investigating bias in teacher judgements Magowan, Louis J Comput Soc Sci Research Article The COVID-19 pandemic meant that, in 2020, students in England were unable to sit their examinations and instead received predicted grades, or “centre assessment grades” (CAGs), from their teachers to allow them to progress. Using the Grading and Admissions Data for England (GRADE) dataset for students from 2018 to 2020, this study treats the use of CAGs as a natural experiment for causally understanding how teacher judgements of academic ability may be biased according to the demographic and socio-economic characteristics of their students. A variety of machine learning models were trained on the 2018–19 data and then used to generate predictions for what the 2020 students were likely to have received had their examinations taken place as usual. The differences between these predictions and the CAGs that students received were calculated and then averaged across students’ different characteristics, revealing what the treatment effects of the use of CAGs were likely to have been for different types of students. No evidence of absolute negative bias against students of any demographic or socio-economic characteristic was found, with all groups of students having received higher CAGs than the grades they were likely to have received had they sat their examinations. Some evidence for relative bias was found, with consistent, but insubstantial differences being observed in the treatment effects of certain groups. However, when higher-order interactions of student characteristics were considered, these differences became more substantial. Intersectional perspectives which emphasise interactions and sub-group differences should be used more widely within quantitative educational equalities research. Springer Nature Singapore 2023-05-15 /pmc/articles/PMC10184100/ /pubmed/37363803 http://dx.doi.org/10.1007/s42001-023-00206-x Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Magowan, Louis Centre assessment grades in 2020: a natural experiment for investigating bias in teacher judgements |
title | Centre assessment grades in 2020: a natural experiment for investigating bias in teacher judgements |
title_full | Centre assessment grades in 2020: a natural experiment for investigating bias in teacher judgements |
title_fullStr | Centre assessment grades in 2020: a natural experiment for investigating bias in teacher judgements |
title_full_unstemmed | Centre assessment grades in 2020: a natural experiment for investigating bias in teacher judgements |
title_short | Centre assessment grades in 2020: a natural experiment for investigating bias in teacher judgements |
title_sort | centre assessment grades in 2020: a natural experiment for investigating bias in teacher judgements |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10184100/ https://www.ncbi.nlm.nih.gov/pubmed/37363803 http://dx.doi.org/10.1007/s42001-023-00206-x |
work_keys_str_mv | AT magowanlouis centreassessmentgradesin2020anaturalexperimentforinvestigatingbiasinteacherjudgements |