Cargando…

Concept design of hybrid-actuated lower limb exoskeleton to reduce the metabolic cost of walking with heavy loads

This paper proposes the conceptual design method for a hybrid-actuated lower limb exoskeleton based on energy consumption simulation. Firstly, the human-machine coupling model is established in OpenSim based on the proposed three passive assistance schemes. On this basis, the method of simulating mu...

Descripción completa

Detalles Bibliográficos
Autores principales: Meng, Qiaoling, Kong, Bolei, Zeng, Qingxin, Fei, Cuizhi, Yu, Hongliu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10184947/
https://www.ncbi.nlm.nih.gov/pubmed/37186605
http://dx.doi.org/10.1371/journal.pone.0282800
Descripción
Sumario:This paper proposes the conceptual design method for a hybrid-actuated lower limb exoskeleton based on energy consumption simulation. Firstly, the human-machine coupling model is established in OpenSim based on the proposed three passive assistance schemes. On this basis, the method of simulating muscle driving is used to find out the scheme that can reduce the metabolic rate the most with 3 passive springs models. Then, an active-passive cooperative control strategy is designed based on the finite state machine to coordinate the operation of the power mechanism and the passive energy storage structure and improve the mobility of the wearer. In the end, a simulation experiment based on the human-machine coupled model with the addition of active actuation is proceeded to evaluate its assistance performance according to reducing metabolic rate. The results show that the average metabolic cost decreased by 7.2% with both spring and motor. The combination of passive energy storage structures with active actuators to help the wearer overcome the additional consumption of energy storage can further reduce the body’s metabolic rate. The proposed conceptual design method can also be utilized to implement the rapid design of a hybrid-actuated lower limb exoskeleton.