Cargando…
CrossMoDA 2021 challenge: Benchmark of cross-modality domain adaptation techniques for vestibular schwannoma and cochlea segmentation
Domain Adaptation (DA) has recently been of strong interest in the medical imaging community. While a large variety of DA techniques have been proposed for image segmentation, most of these techniques have been validated either on private datasets or on small publicly available datasets. Moreover, t...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10186181/ https://www.ncbi.nlm.nih.gov/pubmed/36283200 http://dx.doi.org/10.1016/j.media.2022.102628 |
_version_ | 1785042511203401728 |
---|---|
author | Dorent, Reuben Kujawa, Aaron Ivory, Marina Bakas, Spyridon Rieke, Nicola Joutard, Samuel Glocker, Ben Cardoso, Jorge Modat, Marc Batmanghelich, Kayhan Belkov, Arseniy Calisto, Maria Baldeon Choi, Jae Won Dawant, Benoit M. Dong, Hexin Escalera, Sergio Fan, Yubo Hansen, Lasse Heinrich, Mattias P. Joshi, Smriti Kashtanova, Victoriya Kim, Hyeon Gyu Kondo, Satoshi Kruse, Christian N. Lai-Yuen, Susana K. Li, Hao Liu, Han Ly, Buntheng Oguz, Ipek Shin, Hyungseob Shirokikh, Boris Su, Zixian Wang, Guotai Wu, Jianghao Xu, Yanwu Yao, Kai Zhang, Li Ourselin, Sébastien Shapey, Jonathan Vercauteren, Tom |
author_facet | Dorent, Reuben Kujawa, Aaron Ivory, Marina Bakas, Spyridon Rieke, Nicola Joutard, Samuel Glocker, Ben Cardoso, Jorge Modat, Marc Batmanghelich, Kayhan Belkov, Arseniy Calisto, Maria Baldeon Choi, Jae Won Dawant, Benoit M. Dong, Hexin Escalera, Sergio Fan, Yubo Hansen, Lasse Heinrich, Mattias P. Joshi, Smriti Kashtanova, Victoriya Kim, Hyeon Gyu Kondo, Satoshi Kruse, Christian N. Lai-Yuen, Susana K. Li, Hao Liu, Han Ly, Buntheng Oguz, Ipek Shin, Hyungseob Shirokikh, Boris Su, Zixian Wang, Guotai Wu, Jianghao Xu, Yanwu Yao, Kai Zhang, Li Ourselin, Sébastien Shapey, Jonathan Vercauteren, Tom |
author_sort | Dorent, Reuben |
collection | PubMed |
description | Domain Adaptation (DA) has recently been of strong interest in the medical imaging community. While a large variety of DA techniques have been proposed for image segmentation, most of these techniques have been validated either on private datasets or on small publicly available datasets. Moreover, these datasets mostly addressed single-class problems. To tackle these limitations, the Cross-Modality Domain Adaptation (crossMoDA) challenge was organised in conjunction with the 24th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2021). CrossMoDA is the first large and multi-class benchmark for unsupervised cross-modality Domain Adaptation. The goal of the challenge is to segment two key brain structures involved in the follow-up and treatment planning of vestibular schwannoma (VS): the VS and the cochleas. Currently, the diagnosis and surveillance in patients with VS are commonly performed using contrast-enhanced T1 (ceT(1)) MR imaging. However, there is growing interest in using non-contrast imaging sequences such as high-resolution T2 (hrT(2)) imaging. For this reason, we established an unsupervised cross-modality segmentation benchmark. The training dataset provides annotated ceT(1) scans (N=105) and unpaired non-annotated hrT(2) scans (N=105). The aim was to automatically perform unilateral VS and bilateral cochlea segmentation on hrT(2) scans as provided in the testing set (N=137). This problem is particularly challenging given the large intensity distribution gap across the modalities and the small volume of the structures. A total of 55 teams from 16 countries submitted predictions to the validation leaderboard. Among them, 16 teams from 9 different countries submitted their algorithm for the evaluation phase. The level of performance reached by the top-performing teams is strikingly high (best median Dice score — VS: 88.4%; Cochleas: 85.7%) and close to full supervision (median Dice score — VS: 92.5%; Cochleas: 87.7%). All top-performing methods made use of an image-to-image translation approach to transform the source-domain images into pseudo-target-domain images. A segmentation network was then trained using these generated images and the manual annotations provided for the source image. |
format | Online Article Text |
id | pubmed-10186181 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-101861812023-05-17 CrossMoDA 2021 challenge: Benchmark of cross-modality domain adaptation techniques for vestibular schwannoma and cochlea segmentation Dorent, Reuben Kujawa, Aaron Ivory, Marina Bakas, Spyridon Rieke, Nicola Joutard, Samuel Glocker, Ben Cardoso, Jorge Modat, Marc Batmanghelich, Kayhan Belkov, Arseniy Calisto, Maria Baldeon Choi, Jae Won Dawant, Benoit M. Dong, Hexin Escalera, Sergio Fan, Yubo Hansen, Lasse Heinrich, Mattias P. Joshi, Smriti Kashtanova, Victoriya Kim, Hyeon Gyu Kondo, Satoshi Kruse, Christian N. Lai-Yuen, Susana K. Li, Hao Liu, Han Ly, Buntheng Oguz, Ipek Shin, Hyungseob Shirokikh, Boris Su, Zixian Wang, Guotai Wu, Jianghao Xu, Yanwu Yao, Kai Zhang, Li Ourselin, Sébastien Shapey, Jonathan Vercauteren, Tom Med Image Anal Article Domain Adaptation (DA) has recently been of strong interest in the medical imaging community. While a large variety of DA techniques have been proposed for image segmentation, most of these techniques have been validated either on private datasets or on small publicly available datasets. Moreover, these datasets mostly addressed single-class problems. To tackle these limitations, the Cross-Modality Domain Adaptation (crossMoDA) challenge was organised in conjunction with the 24th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2021). CrossMoDA is the first large and multi-class benchmark for unsupervised cross-modality Domain Adaptation. The goal of the challenge is to segment two key brain structures involved in the follow-up and treatment planning of vestibular schwannoma (VS): the VS and the cochleas. Currently, the diagnosis and surveillance in patients with VS are commonly performed using contrast-enhanced T1 (ceT(1)) MR imaging. However, there is growing interest in using non-contrast imaging sequences such as high-resolution T2 (hrT(2)) imaging. For this reason, we established an unsupervised cross-modality segmentation benchmark. The training dataset provides annotated ceT(1) scans (N=105) and unpaired non-annotated hrT(2) scans (N=105). The aim was to automatically perform unilateral VS and bilateral cochlea segmentation on hrT(2) scans as provided in the testing set (N=137). This problem is particularly challenging given the large intensity distribution gap across the modalities and the small volume of the structures. A total of 55 teams from 16 countries submitted predictions to the validation leaderboard. Among them, 16 teams from 9 different countries submitted their algorithm for the evaluation phase. The level of performance reached by the top-performing teams is strikingly high (best median Dice score — VS: 88.4%; Cochleas: 85.7%) and close to full supervision (median Dice score — VS: 92.5%; Cochleas: 87.7%). All top-performing methods made use of an image-to-image translation approach to transform the source-domain images into pseudo-target-domain images. A segmentation network was then trained using these generated images and the manual annotations provided for the source image. Elsevier 2023-01 /pmc/articles/PMC10186181/ /pubmed/36283200 http://dx.doi.org/10.1016/j.media.2022.102628 Text en Crown Copyright © 2022 Published by Elsevier B.V. https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Dorent, Reuben Kujawa, Aaron Ivory, Marina Bakas, Spyridon Rieke, Nicola Joutard, Samuel Glocker, Ben Cardoso, Jorge Modat, Marc Batmanghelich, Kayhan Belkov, Arseniy Calisto, Maria Baldeon Choi, Jae Won Dawant, Benoit M. Dong, Hexin Escalera, Sergio Fan, Yubo Hansen, Lasse Heinrich, Mattias P. Joshi, Smriti Kashtanova, Victoriya Kim, Hyeon Gyu Kondo, Satoshi Kruse, Christian N. Lai-Yuen, Susana K. Li, Hao Liu, Han Ly, Buntheng Oguz, Ipek Shin, Hyungseob Shirokikh, Boris Su, Zixian Wang, Guotai Wu, Jianghao Xu, Yanwu Yao, Kai Zhang, Li Ourselin, Sébastien Shapey, Jonathan Vercauteren, Tom CrossMoDA 2021 challenge: Benchmark of cross-modality domain adaptation techniques for vestibular schwannoma and cochlea segmentation |
title | CrossMoDA 2021 challenge: Benchmark of cross-modality domain adaptation techniques for vestibular schwannoma and cochlea segmentation |
title_full | CrossMoDA 2021 challenge: Benchmark of cross-modality domain adaptation techniques for vestibular schwannoma and cochlea segmentation |
title_fullStr | CrossMoDA 2021 challenge: Benchmark of cross-modality domain adaptation techniques for vestibular schwannoma and cochlea segmentation |
title_full_unstemmed | CrossMoDA 2021 challenge: Benchmark of cross-modality domain adaptation techniques for vestibular schwannoma and cochlea segmentation |
title_short | CrossMoDA 2021 challenge: Benchmark of cross-modality domain adaptation techniques for vestibular schwannoma and cochlea segmentation |
title_sort | crossmoda 2021 challenge: benchmark of cross-modality domain adaptation techniques for vestibular schwannoma and cochlea segmentation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10186181/ https://www.ncbi.nlm.nih.gov/pubmed/36283200 http://dx.doi.org/10.1016/j.media.2022.102628 |
work_keys_str_mv | AT dorentreuben crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT kujawaaaron crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT ivorymarina crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT bakasspyridon crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT riekenicola crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT joutardsamuel crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT glockerben crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT cardosojorge crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT modatmarc crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT batmanghelichkayhan crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT belkovarseniy crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT calistomariabaldeon crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT choijaewon crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT dawantbenoitm crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT donghexin crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT escalerasergio crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT fanyubo crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT hansenlasse crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT heinrichmattiasp crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT joshismriti crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT kashtanovavictoriya crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT kimhyeongyu crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT kondosatoshi crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT krusechristiann crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT laiyuensusanak crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT lihao crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT liuhan crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT lybuntheng crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT oguzipek crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT shinhyungseob crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT shirokikhboris crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT suzixian crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT wangguotai crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT wujianghao crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT xuyanwu crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT yaokai crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT zhangli crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT ourselinsebastien crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT shapeyjonathan crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation AT vercauterentom crossmoda2021challengebenchmarkofcrossmodalitydomainadaptationtechniquesforvestibularschwannomaandcochleasegmentation |