Cargando…
Tissue contamination challenges the credibility of machine learning models in real world digital pathology
Machine learning (ML) models are poised to transform surgical pathology practice. The most successful use attention mechanisms to examine whole slides, identify which areas of tissue are diagnostic, and use them to guide diagnosis. Tissue contaminants, such as floaters, represent unexpected tissue....
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187357/ https://www.ncbi.nlm.nih.gov/pubmed/37205404 http://dx.doi.org/10.1101/2023.04.28.23289287 |