Cargando…
Tissue contamination challenges the credibility of machine learning models in real world digital pathology
Machine learning (ML) models are poised to transform surgical pathology practice. The most successful use attention mechanisms to examine whole slides, identify which areas of tissue are diagnostic, and use them to guide diagnosis. Tissue contaminants, such as floaters, represent unexpected tissue....
Autores principales: | Irmakci, Ismail, Nateghi, Ramin, Zhou, Rujoi, Ross, Ashley E., Yang, Ximing J., Cooper, Lee A. D., Goldstein, Jeffery A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187357/ https://www.ncbi.nlm.nih.gov/pubmed/37205404 http://dx.doi.org/10.1101/2023.04.28.23289287 |
Ejemplares similares
-
Determination of Aflatoxin M1 Contamination and Integrity as well as Credibility
por: Ataee, R, et al.
Publicado: (2012) -
Digital pathology world tour
por: Rizzo, Paola Chiara, et al.
Publicado: (2023) -
Talk is chief: leadership, communication & credibility in a high-stakes world
por: Modzelewski, Jack
Publicado: (2019) -
Real world digital photography
por: Eismann, Katrin, et al.
Publicado: (2011) -
Real world digital photograph
por: Eismann, Katrin, et al.
Publicado: (2004)