Cargando…
Holding times to maintain quasi-regular headways and reduce real-time bus bunching
Real-time control strategies deal with the day’s dynamics in bus rapid transit systems. This work focuses on minimizing the number of buses of the same line cruising head-to-tail or arriving at a stop simultaneously by implementing bus holding times at the stops as a control strategy. We propose a n...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10188328/ http://dx.doi.org/10.1007/s12469-023-00326-7 |
Sumario: | Real-time control strategies deal with the day’s dynamics in bus rapid transit systems. This work focuses on minimizing the number of buses of the same line cruising head-to-tail or arriving at a stop simultaneously by implementing bus holding times at the stops as a control strategy. We propose a new mathematical model to determine the bus holding times. It has quadratic constraints but a linear objective function that minimizes the bus bunching penalties. We also propose a beam-search heuristic to reduce computational solution time to solve large instances. Experimental results on a bus rapid transit system simulation in Monterrey, Mexico, show a bus bunching reduction of 45% compared to the case without optimization. Moreover, passenger waiting times are reduced by 30% in some scenarios. For real-world instances with 60 buses, the beam-search approach provides solutions with an optimality gap of less than 5% in less than 3 s. |
---|