Cargando…
De novo distillation of thermodynamic affinity from deep learning regulatory sequence models of in vivo protein-DNA binding
Transcription factors (TF) are proteins that bind DNA in a sequence-specific manner to regulate gene transcription. Despite their unique intrinsic sequence preferences, in vivo genomic occupancy profiles of TFs differ across cellular contexts. Hence, deciphering the sequence determinants of TF bindi...
Autores principales: | Alexandari, Amr M., Horton, Connor A., Shrikumar, Avanti, Shah, Nilay, Li, Eileen, Weilert, Melanie, Pufall, Miles A., Zeitlinger, Julia, Fordyce, Polly M., Kundaje, Anshul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197627/ https://www.ncbi.nlm.nih.gov/pubmed/37214836 http://dx.doi.org/10.1101/2023.05.11.540401 |
Ejemplares similares
-
Base-resolution models of transcription factor binding reveal soft motif syntax
por: Avsec, Žiga, et al.
Publicado: (2021) -
GkmExplain: fast and accurate interpretation of nonlinear gapped k-mer SVMs
por: Shrikumar, Avanti, et al.
Publicado: (2019) -
Deciphering regulatory DNA sequences and noncoding genetic variants using neural network models of massively parallel reporter assays
por: Movva, Rajiv, et al.
Publicado: (2019) -
Domain-adaptive neural networks improve cross-species prediction of transcription factor binding
por: Cochran, Kelly, et al.
Publicado: (2022) -
Discovering epistatic feature interactions from neural network models of regulatory DNA sequences
por: Greenside, Peyton, et al.
Publicado: (2018)