Cargando…
A highly sensitive vertical plug-in source drain high Schottky barrier bilateral gate controlled bidirectional tunnel field effect transistor
In this article, we propose a highly sensitive vertically plug-in source drain contacts high Schottky barrier based bilateral gate and assistant gate controlled bidirectional tunnel field Effect transistor (VPISDC-HSB-BTFET). It can achieve much more sensitive forward current driving ability than th...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10198513/ https://www.ncbi.nlm.nih.gov/pubmed/37205648 http://dx.doi.org/10.1371/journal.pone.0285320 |
Sumario: | In this article, we propose a highly sensitive vertically plug-in source drain contacts high Schottky barrier based bilateral gate and assistant gate controlled bidirectional tunnel field Effect transistor (VPISDC-HSB-BTFET). It can achieve much more sensitive forward current driving ability than the previously proposed High Schottky barrier source/drain contacts based bilateral gate and assistant Gate controlled bidirectional tunnel field Effect transistor (HSB-BTFET). Silicon body of the proposed VPISDC-HSB-BTFET is etched into a U-shaped structure. By etching both sides of the silicon body to form vertically plug-in source drain contacts, the source and drain electrodes are plugged into a certain height of the vertical parts of both sides of the U-shaped silicon body. Thereafter, the efficient area of the band-to-band tunneling generation region near the source drain contacts is significantly increased, so as to achieve sensitive ON-state current driving ability. Comparing to the mainstream FinFET technology, lower subthreshold swing, lower static power consumption and Higher I(on)−I(off) ratio can be achieved. |
---|