Cargando…

Reduced-order modeling for stochastic large-scale and time-dependent flow problems using deep spatial and temporal convolutional autoencoders

A non-intrusive reduced-order model based on convolutional autoencoders is proposed as a data-driven tool to build an efficient nonlinear reduced-order model for stochastic spatiotemporal large-scale flow problems. The objective is to perform accurate and rapid uncertainty analyses of the flow outpu...

Descripción completa

Detalles Bibliográficos
Autores principales: Abdedou, Azzedine, Soulaimani, Azzeddine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10198944/
https://www.ncbi.nlm.nih.gov/pubmed/37215229
http://dx.doi.org/10.1186/s40323-023-00244-0