Cargando…
Reduced-order modeling for stochastic large-scale and time-dependent flow problems using deep spatial and temporal convolutional autoencoders
A non-intrusive reduced-order model based on convolutional autoencoders is proposed as a data-driven tool to build an efficient nonlinear reduced-order model for stochastic spatiotemporal large-scale flow problems. The objective is to perform accurate and rapid uncertainty analyses of the flow outpu...
Autores principales: | Abdedou, Azzedine, Soulaimani, Azzeddine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10198944/ https://www.ncbi.nlm.nih.gov/pubmed/37215229 http://dx.doi.org/10.1186/s40323-023-00244-0 |
Ejemplares similares
-
Deep convolutional architectures for extrapolative forecasts in time-dependent flow problems
por: Bhatt, Pratyush, et al.
Publicado: (2023) -
Ovarian tumor diagnosis using deep convolutional neural networks and a denoising convolutional autoencoder
por: Jung, Yuyeon, et al.
Publicado: (2022) -
Image-Based Detection of Modifications in Assembled PCBs with Deep Convolutional Autoencoders
por: Candido de Oliveira, Diulhio, et al.
Publicado: (2023) -
Deep Convolutional Neural Network with Deconvolution
and a Deep Autoencoder for Fault Detection and Diagnosis
por: Kanno, Yasuhiro, et al.
Publicado: (2022) -
Unsupervised clustering of SARS-CoV-2 using deep convolutional autoencoder
por: Sherif, Fayroz F., et al.
Publicado: (2022)