Cargando…
Wafer map failure pattern classification using geometric transformation-invariant convolutional neural network
Wafer map defect pattern classification is essential in semiconductor manufacturing processes for increasing production yield and quality by providing key root-cause information. However, manual diagnosis by field experts is difficult in large-scale production situations, and existing deep-learning...
Autores principales: | Jeong, Iljoo, Lee, Soo Young, Park, Keonhyeok, Kim, Iljeok, Huh, Hyunsuk, Lee, Seungchul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199043/ https://www.ncbi.nlm.nih.gov/pubmed/37208344 http://dx.doi.org/10.1038/s41598-023-34147-2 |
Ejemplares similares
-
Efficient Convolutional Neural Networks for Semiconductor Wafer Bin Map Classification
por: Shin, Eunmi, et al.
Publicado: (2023) -
Predicting multipotency of human adult stem cells derived from various donors through deep learning
por: Kim, Hyeonji, et al.
Publicado: (2022) -
Transfer of Learning in the Convolutional Neural Networks on Classifying Geometric Shapes Based on Local or Global Invariants
por: Zheng, Yufeng, et al.
Publicado: (2021) -
Gallbladder Polyp Classification in Ultrasound Images Using an Ensemble Convolutional Neural Network Model
por: Kim, Taewan, et al.
Publicado: (2021) -
Deep learning predicts the differentiation of kidney organoids derived from human induced pluripotent stem cells
por: Park, Keonhyeok, et al.
Publicado: (2023)