Cargando…

Stability-Enhanced Ternary Solid Dispersions of Glyburide: Effect of Preparation Method on Physicochemical Properties

INTRODUCTION: Limited aqueous solubility and subsequent poor absorption and low bioavailability are the main challenges in oral drug delivery. Solid dispersion is a widely used formulation strategy to overcome this problem. Despite their efficiency, drug crystallization tendency and poor physical st...

Descripción completa

Detalles Bibliográficos
Autores principales: Barghi, Leila, Vekalati, Afshin, Jahangiri, Azin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199792/
https://www.ncbi.nlm.nih.gov/pubmed/37215486
http://dx.doi.org/10.1155/2023/2641153
_version_ 1785045005136560128
author Barghi, Leila
Vekalati, Afshin
Jahangiri, Azin
author_facet Barghi, Leila
Vekalati, Afshin
Jahangiri, Azin
author_sort Barghi, Leila
collection PubMed
description INTRODUCTION: Limited aqueous solubility and subsequent poor absorption and low bioavailability are the main challenges in oral drug delivery. Solid dispersion is a widely used formulation strategy to overcome this problem. Despite their efficiency, drug crystallization tendency and poor physical stability limited their commercial use. To overcome this defect, ternary solid dispersions of glyburide: sodium lauryl sulfate (SLS) and polyethylene glycol 4000 (PEG), were developed using the fusion (F) and solvent evaporation (SE) techniques and subsequently evaluated and compared. MATERIALS AND METHODS: Physicochemical and dissolution properties of the prepared ternary solid dispersions were evaluated using differential scanning calorimetry (DSC), infrared spectroscopy (FTIR), and dissolution test. Flow properties were also assessed using Carr's index and Hausner's ratio. The physical stability of the formulations was evaluated initially and after 12 months by comparing dissolution properties. RESULTS: Formulations prepared by both methods similarly showed significant improvements in dissolution efficiency and mean dissolution time compared to the pure drug. However, formulations that were prepared by SE showed a greater dissolution rate during the initial phase of dissolution. Also, after a 12-month follow-up, no significant change was observed in the mentioned parameters. The results of the infrared spectroscopy indicated that there was no chemical interaction between the drug and the polymer. The absence of endotherms related to the pure drug from thermograms of the prepared formulations could be indicative of reduced crystallinity or the gradual dissolving of the drug in the molten polymer. Moreover, formulations prepared by the SE technique revealed superior flowability and compressibility in comparison with the pure drug and physical mixture (ANOVA, P  <  0.05). CONCLUSION: Efficient ternary solid dispersions of glyburide were successfully prepared by F and SE methods. Solid dispersions prepared by SE, in addition to increasing the dissolution properties and the possibility of improving the bioavailability of the drug, showed acceptable long-term physical stability with remarkably improved flowability and compressibility features.
format Online
Article
Text
id pubmed-10199792
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-101997922023-05-21 Stability-Enhanced Ternary Solid Dispersions of Glyburide: Effect of Preparation Method on Physicochemical Properties Barghi, Leila Vekalati, Afshin Jahangiri, Azin Adv Pharmacol Pharm Sci Research Article INTRODUCTION: Limited aqueous solubility and subsequent poor absorption and low bioavailability are the main challenges in oral drug delivery. Solid dispersion is a widely used formulation strategy to overcome this problem. Despite their efficiency, drug crystallization tendency and poor physical stability limited their commercial use. To overcome this defect, ternary solid dispersions of glyburide: sodium lauryl sulfate (SLS) and polyethylene glycol 4000 (PEG), were developed using the fusion (F) and solvent evaporation (SE) techniques and subsequently evaluated and compared. MATERIALS AND METHODS: Physicochemical and dissolution properties of the prepared ternary solid dispersions were evaluated using differential scanning calorimetry (DSC), infrared spectroscopy (FTIR), and dissolution test. Flow properties were also assessed using Carr's index and Hausner's ratio. The physical stability of the formulations was evaluated initially and after 12 months by comparing dissolution properties. RESULTS: Formulations prepared by both methods similarly showed significant improvements in dissolution efficiency and mean dissolution time compared to the pure drug. However, formulations that were prepared by SE showed a greater dissolution rate during the initial phase of dissolution. Also, after a 12-month follow-up, no significant change was observed in the mentioned parameters. The results of the infrared spectroscopy indicated that there was no chemical interaction between the drug and the polymer. The absence of endotherms related to the pure drug from thermograms of the prepared formulations could be indicative of reduced crystallinity or the gradual dissolving of the drug in the molten polymer. Moreover, formulations prepared by the SE technique revealed superior flowability and compressibility in comparison with the pure drug and physical mixture (ANOVA, P  <  0.05). CONCLUSION: Efficient ternary solid dispersions of glyburide were successfully prepared by F and SE methods. Solid dispersions prepared by SE, in addition to increasing the dissolution properties and the possibility of improving the bioavailability of the drug, showed acceptable long-term physical stability with remarkably improved flowability and compressibility features. Hindawi 2023-05-11 /pmc/articles/PMC10199792/ /pubmed/37215486 http://dx.doi.org/10.1155/2023/2641153 Text en Copyright © 2023 Leila Barghi et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Barghi, Leila
Vekalati, Afshin
Jahangiri, Azin
Stability-Enhanced Ternary Solid Dispersions of Glyburide: Effect of Preparation Method on Physicochemical Properties
title Stability-Enhanced Ternary Solid Dispersions of Glyburide: Effect of Preparation Method on Physicochemical Properties
title_full Stability-Enhanced Ternary Solid Dispersions of Glyburide: Effect of Preparation Method on Physicochemical Properties
title_fullStr Stability-Enhanced Ternary Solid Dispersions of Glyburide: Effect of Preparation Method on Physicochemical Properties
title_full_unstemmed Stability-Enhanced Ternary Solid Dispersions of Glyburide: Effect of Preparation Method on Physicochemical Properties
title_short Stability-Enhanced Ternary Solid Dispersions of Glyburide: Effect of Preparation Method on Physicochemical Properties
title_sort stability-enhanced ternary solid dispersions of glyburide: effect of preparation method on physicochemical properties
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199792/
https://www.ncbi.nlm.nih.gov/pubmed/37215486
http://dx.doi.org/10.1155/2023/2641153
work_keys_str_mv AT barghileila stabilityenhancedternarysoliddispersionsofglyburideeffectofpreparationmethodonphysicochemicalproperties
AT vekalatiafshin stabilityenhancedternarysoliddispersionsofglyburideeffectofpreparationmethodonphysicochemicalproperties
AT jahangiriazin stabilityenhancedternarysoliddispersionsofglyburideeffectofpreparationmethodonphysicochemicalproperties