Cargando…

Spermidine improves angiogenic capacity of senescent endothelial cells, and enhances ischemia-induced neovascularization in aged mice

Aging is closely associated with the increased morbidity and mortality of ischemic cardiovascular disease, at least partially through impaired angiogenic capacity. Endothelial cells (ECs) play a crucial role in angiogenesis, and their angiogenic capacity declines during aging. Spermidine is a natura...

Descripción completa

Detalles Bibliográficos
Autores principales: Ueno, Daisuke, Ikeda, Koji, Yamazaki, Ekura, Katayama, Akiko, Urata, Ryota, Matoba, Satoaki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10205711/
https://www.ncbi.nlm.nih.gov/pubmed/37221395
http://dx.doi.org/10.1038/s41598-023-35447-3
Descripción
Sumario:Aging is closely associated with the increased morbidity and mortality of ischemic cardiovascular disease, at least partially through impaired angiogenic capacity. Endothelial cells (ECs) play a crucial role in angiogenesis, and their angiogenic capacity declines during aging. Spermidine is a naturally occurring polyamine, and its dietary supplementation has exhibited distinct anti-aging and healthy lifespan-extending effects in various species such as yeast, worms, flies, and mice. Here, we explore the effects of spermidine supplementation on the age-related decline in angiogenesis both in vitro and in vivo. Intracellular polyamine contents were reduced in replicative senescent ECs, which were subsequently recovered by spermidine supplementation. Our findings reveal that spermidine supplementation improved the declined angiogenic capacity of senescent ECs, including migration and tube-formation, without affecting the senescence phenotypes. Mechanistically, spermidine enhanced both autophagy and mitophagy, and improved mitochondrial quality in senescent ECs. Ischemia-induced neovascularization was assessed using the hind-limb ischemia model in mice. Limb blood flow recovery and neovascularization in the ischemic muscle were considerably impaired in aged mice compared to young ones. Of note, dietary spermidine significantly enhanced ischemia-induced angiogenesis, and improved the blood flow recovery in the ischemic limb, especially in aged mice. Our results reveal novel proangiogenic functions of spermidine, suggesting its therapeutic potential against ischemic disease.