Cargando…

Quantitative NMR analysis of the mechanism and kinetics of chaperone Hsp104 action on amyloid-β42 aggregation and fibril formation

The chaperone Hsp104, a member of the Hsp100/Clp family of translocases, prevents fibril formation of a variety of amyloidogenic peptides in a paradoxically substoichiometric manner. To understand the mechanism whereby Hsp104 inhibits fibril formation, we probed the interaction of Hsp104 with the Al...

Descripción completa

Detalles Bibliográficos
Autores principales: Ghosh, Shreya, Tugarinov, Vitali, Clore, G. Marius
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10214214/
https://www.ncbi.nlm.nih.gov/pubmed/37186848
http://dx.doi.org/10.1073/pnas.2305823120
_version_ 1785145889323483136
author Ghosh, Shreya
Tugarinov, Vitali
Clore, G. Marius
author_facet Ghosh, Shreya
Tugarinov, Vitali
Clore, G. Marius
author_sort Ghosh, Shreya
collection PubMed
description The chaperone Hsp104, a member of the Hsp100/Clp family of translocases, prevents fibril formation of a variety of amyloidogenic peptides in a paradoxically substoichiometric manner. To understand the mechanism whereby Hsp104 inhibits fibril formation, we probed the interaction of Hsp104 with the Alzheimer’s amyloid-β42 (Aβ42) peptide using a variety of biophysical techniques. Hsp104 is highly effective at suppressing the formation of Thioflavin T (ThT) reactive mature fibrils that are readily observed by atomic force (AFM) and electron (EM) microscopies. Quantitative kinetic analysis and global fitting was performed on serially recorded (1)H-(15)N correlation spectra to monitor the disappearance of Aβ42 monomers during the course of aggregation over a wide range of Hsp104 concentrations. Under the conditions employed (50 μM Aβ42 at 20 °C), Aβ42 aggregation occurs by a branching mechanism: an irreversible on-pathway leading to mature fibrils that entails primary and secondary nucleation and saturating elongation; and a reversible off-pathway to form nonfibrillar oligomers, unreactive to ThT and too large to be observed directly by NMR, but too small to be visualized by AFM or EM. Hsp104 binds reversibly with nanomolar affinity to sparsely populated Aβ42 nuclei present in nanomolar concentrations, generated by primary and secondary nucleation, thereby completely inhibiting on-pathway fibril formation at substoichiometric ratios of Hsp104 to Aβ42 monomers. Tight binding to sparsely populated nuclei likely constitutes a general mechanism for substoichiometric inhibition of fibrillization by a variety of chaperones. Hsp104 also impacts off-pathway oligomerization but to a much smaller degree initially reducing and then increasing the rate of off-pathway oligomerization.
format Online
Article
Text
id pubmed-10214214
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-102142142023-11-15 Quantitative NMR analysis of the mechanism and kinetics of chaperone Hsp104 action on amyloid-β42 aggregation and fibril formation Ghosh, Shreya Tugarinov, Vitali Clore, G. Marius Proc Natl Acad Sci U S A Biological Sciences The chaperone Hsp104, a member of the Hsp100/Clp family of translocases, prevents fibril formation of a variety of amyloidogenic peptides in a paradoxically substoichiometric manner. To understand the mechanism whereby Hsp104 inhibits fibril formation, we probed the interaction of Hsp104 with the Alzheimer’s amyloid-β42 (Aβ42) peptide using a variety of biophysical techniques. Hsp104 is highly effective at suppressing the formation of Thioflavin T (ThT) reactive mature fibrils that are readily observed by atomic force (AFM) and electron (EM) microscopies. Quantitative kinetic analysis and global fitting was performed on serially recorded (1)H-(15)N correlation spectra to monitor the disappearance of Aβ42 monomers during the course of aggregation over a wide range of Hsp104 concentrations. Under the conditions employed (50 μM Aβ42 at 20 °C), Aβ42 aggregation occurs by a branching mechanism: an irreversible on-pathway leading to mature fibrils that entails primary and secondary nucleation and saturating elongation; and a reversible off-pathway to form nonfibrillar oligomers, unreactive to ThT and too large to be observed directly by NMR, but too small to be visualized by AFM or EM. Hsp104 binds reversibly with nanomolar affinity to sparsely populated Aβ42 nuclei present in nanomolar concentrations, generated by primary and secondary nucleation, thereby completely inhibiting on-pathway fibril formation at substoichiometric ratios of Hsp104 to Aβ42 monomers. Tight binding to sparsely populated nuclei likely constitutes a general mechanism for substoichiometric inhibition of fibrillization by a variety of chaperones. Hsp104 also impacts off-pathway oligomerization but to a much smaller degree initially reducing and then increasing the rate of off-pathway oligomerization. National Academy of Sciences 2023-05-15 2023-05-23 /pmc/articles/PMC10214214/ /pubmed/37186848 http://dx.doi.org/10.1073/pnas.2305823120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Biological Sciences
Ghosh, Shreya
Tugarinov, Vitali
Clore, G. Marius
Quantitative NMR analysis of the mechanism and kinetics of chaperone Hsp104 action on amyloid-β42 aggregation and fibril formation
title Quantitative NMR analysis of the mechanism and kinetics of chaperone Hsp104 action on amyloid-β42 aggregation and fibril formation
title_full Quantitative NMR analysis of the mechanism and kinetics of chaperone Hsp104 action on amyloid-β42 aggregation and fibril formation
title_fullStr Quantitative NMR analysis of the mechanism and kinetics of chaperone Hsp104 action on amyloid-β42 aggregation and fibril formation
title_full_unstemmed Quantitative NMR analysis of the mechanism and kinetics of chaperone Hsp104 action on amyloid-β42 aggregation and fibril formation
title_short Quantitative NMR analysis of the mechanism and kinetics of chaperone Hsp104 action on amyloid-β42 aggregation and fibril formation
title_sort quantitative nmr analysis of the mechanism and kinetics of chaperone hsp104 action on amyloid-β42 aggregation and fibril formation
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10214214/
https://www.ncbi.nlm.nih.gov/pubmed/37186848
http://dx.doi.org/10.1073/pnas.2305823120
work_keys_str_mv AT ghoshshreya quantitativenmranalysisofthemechanismandkineticsofchaperonehsp104actiononamyloidb42aggregationandfibrilformation
AT tugarinovvitali quantitativenmranalysisofthemechanismandkineticsofchaperonehsp104actiononamyloidb42aggregationandfibrilformation
AT cloregmarius quantitativenmranalysisofthemechanismandkineticsofchaperonehsp104actiononamyloidb42aggregationandfibrilformation