Cargando…

Neurosteroids Mediate Neuroprotection in an In Vitro Model of Hypoxic/Hypoglycaemic Excitotoxicity via δ-GABA(A) Receptors without Affecting Synaptic Plasticity

Neurosteroids and benzodiazepines are modulators of the GABA(A) receptors, thereby causing anxiolysis. Furthermore, benzodiazepines such as midazolam are known to cause adverse side-effects on cognition upon administration. We previously found that midazolam at nanomolar concentrations (10 nM) block...

Descripción completa

Detalles Bibliográficos
Autores principales: Puig-Bosch, Xènia, Ballmann, Markus, Bieletzki, Stefan, Antkowiak, Bernd, Rudolph, Uwe, Zeilhofer, Hanns Ulrich, Rammes, Gerhard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10219454/
https://www.ncbi.nlm.nih.gov/pubmed/37240402
http://dx.doi.org/10.3390/ijms24109056
Descripción
Sumario:Neurosteroids and benzodiazepines are modulators of the GABA(A) receptors, thereby causing anxiolysis. Furthermore, benzodiazepines such as midazolam are known to cause adverse side-effects on cognition upon administration. We previously found that midazolam at nanomolar concentrations (10 nM) blocked long-term potentiation (LTP). Here, we aim to study the effect of neurosteroids and their synthesis using XBD173, which is a synthetic compound that promotes neurosteroidogenesis by binding to the translocator protein 18 kDa (TSPO), since they might provide anxiolytic activity with a favourable side-effect profile. By means of electrophysiological measurements and the use of mice with targeted genetic mutations, we revealed that XBD173, a selective ligand of the translocator protein 18 kDa (TSPO), induced neurosteroidogenesis. In addition, the exogenous application of potentially synthesised neurosteroids (THDOC and allopregnanolone) did not depress hippocampal CA1-LTP, the cellular correlate of learning and memory. This phenomenon was observed at the same concentrations that neurosteroids conferred neuroprotection in a model of ischaemia-induced hippocampal excitotoxicity. In conclusion, our results indicate that TSPO ligands are promising candidates for post-ischaemic recovery exerting neuroprotection, in contrast to midazolam, without detrimental effects on synaptic plasticity.