Cargando…
Optimizing Vancomycin Therapy in Critically Ill Children: A Population Pharmacokinetics Study to Inform Vancomycin Area under the Curve Estimation Using Novel Biomarkers
Area under the curve (AUC)-directed vancomycin therapy is recommended, but Bayesian AUC estimation in critically ill children is difficult due to inadequate methods for estimating kidney function. We prospectively enrolled 50 critically ill children receiving IV vancomycin for suspected infection an...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10220925/ https://www.ncbi.nlm.nih.gov/pubmed/37242578 http://dx.doi.org/10.3390/pharmaceutics15051336 |
_version_ | 1785049333909946368 |
---|---|
author | Downes, Kevin J. Zuppa, Athena F. Sharova, Anna Neely, Michael N. |
author_facet | Downes, Kevin J. Zuppa, Athena F. Sharova, Anna Neely, Michael N. |
author_sort | Downes, Kevin J. |
collection | PubMed |
description | Area under the curve (AUC)-directed vancomycin therapy is recommended, but Bayesian AUC estimation in critically ill children is difficult due to inadequate methods for estimating kidney function. We prospectively enrolled 50 critically ill children receiving IV vancomycin for suspected infection and divided them into model training (n = 30) and testing (n = 20) groups. We performed nonparametric population PK modeling in the training group using Pmetrics, evaluating novel urinary and plasma kidney biomarkers as covariates on vancomycin clearance. In this group, a two-compartment model best described the data. During covariate testing, cystatin C-based estimated glomerular filtration rate (eGFR) and urinary neutrophil gelatinase-associated lipocalin (NGAL; full model) improved model likelihood when included as covariates on clearance. We then used multiple-model optimization to define the optimal sampling times to estimate AUC(24) for each subject in the model testing group and compared the Bayesian posterior AUC(24) to AUC(24) calculated using noncompartmental analysis from all measured concentrations for each subject. Our full model provided accurate and precise estimates of vancomycin AUC (bias 2.3%, imprecision 6.2%). However, AUC prediction was similar when using reduced models with only cystatin C-based eGFR (bias 1.8%, imprecision 7.0%) or creatinine-based eGFR (bias −2.4%, imprecision 6.2%) as covariates on clearance. All three model(s) facilitated accurate and precise estimation of vancomycin AUC in critically ill children. |
format | Online Article Text |
id | pubmed-10220925 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102209252023-05-28 Optimizing Vancomycin Therapy in Critically Ill Children: A Population Pharmacokinetics Study to Inform Vancomycin Area under the Curve Estimation Using Novel Biomarkers Downes, Kevin J. Zuppa, Athena F. Sharova, Anna Neely, Michael N. Pharmaceutics Article Area under the curve (AUC)-directed vancomycin therapy is recommended, but Bayesian AUC estimation in critically ill children is difficult due to inadequate methods for estimating kidney function. We prospectively enrolled 50 critically ill children receiving IV vancomycin for suspected infection and divided them into model training (n = 30) and testing (n = 20) groups. We performed nonparametric population PK modeling in the training group using Pmetrics, evaluating novel urinary and plasma kidney biomarkers as covariates on vancomycin clearance. In this group, a two-compartment model best described the data. During covariate testing, cystatin C-based estimated glomerular filtration rate (eGFR) and urinary neutrophil gelatinase-associated lipocalin (NGAL; full model) improved model likelihood when included as covariates on clearance. We then used multiple-model optimization to define the optimal sampling times to estimate AUC(24) for each subject in the model testing group and compared the Bayesian posterior AUC(24) to AUC(24) calculated using noncompartmental analysis from all measured concentrations for each subject. Our full model provided accurate and precise estimates of vancomycin AUC (bias 2.3%, imprecision 6.2%). However, AUC prediction was similar when using reduced models with only cystatin C-based eGFR (bias 1.8%, imprecision 7.0%) or creatinine-based eGFR (bias −2.4%, imprecision 6.2%) as covariates on clearance. All three model(s) facilitated accurate and precise estimation of vancomycin AUC in critically ill children. MDPI 2023-04-25 /pmc/articles/PMC10220925/ /pubmed/37242578 http://dx.doi.org/10.3390/pharmaceutics15051336 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Downes, Kevin J. Zuppa, Athena F. Sharova, Anna Neely, Michael N. Optimizing Vancomycin Therapy in Critically Ill Children: A Population Pharmacokinetics Study to Inform Vancomycin Area under the Curve Estimation Using Novel Biomarkers |
title | Optimizing Vancomycin Therapy in Critically Ill Children: A Population Pharmacokinetics Study to Inform Vancomycin Area under the Curve Estimation Using Novel Biomarkers |
title_full | Optimizing Vancomycin Therapy in Critically Ill Children: A Population Pharmacokinetics Study to Inform Vancomycin Area under the Curve Estimation Using Novel Biomarkers |
title_fullStr | Optimizing Vancomycin Therapy in Critically Ill Children: A Population Pharmacokinetics Study to Inform Vancomycin Area under the Curve Estimation Using Novel Biomarkers |
title_full_unstemmed | Optimizing Vancomycin Therapy in Critically Ill Children: A Population Pharmacokinetics Study to Inform Vancomycin Area under the Curve Estimation Using Novel Biomarkers |
title_short | Optimizing Vancomycin Therapy in Critically Ill Children: A Population Pharmacokinetics Study to Inform Vancomycin Area under the Curve Estimation Using Novel Biomarkers |
title_sort | optimizing vancomycin therapy in critically ill children: a population pharmacokinetics study to inform vancomycin area under the curve estimation using novel biomarkers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10220925/ https://www.ncbi.nlm.nih.gov/pubmed/37242578 http://dx.doi.org/10.3390/pharmaceutics15051336 |
work_keys_str_mv | AT downeskevinj optimizingvancomycintherapyincriticallyillchildrenapopulationpharmacokineticsstudytoinformvancomycinareaunderthecurveestimationusingnovelbiomarkers AT zuppaathenaf optimizingvancomycintherapyincriticallyillchildrenapopulationpharmacokineticsstudytoinformvancomycinareaunderthecurveestimationusingnovelbiomarkers AT sharovaanna optimizingvancomycintherapyincriticallyillchildrenapopulationpharmacokineticsstudytoinformvancomycinareaunderthecurveestimationusingnovelbiomarkers AT neelymichaeln optimizingvancomycintherapyincriticallyillchildrenapopulationpharmacokineticsstudytoinformvancomycinareaunderthecurveestimationusingnovelbiomarkers |