Cargando…
Generating Defective Epoxy Drop Images for Die Attachment in Integrated Circuit Manufacturing via Enhanced Loss Function CycleGAN
In integrated circuit manufacturing, defects in epoxy drops for die attachments are required to be identified during production. Modern identification techniques based on vision-based deep neural networks require the availability of a very large number of defect and non-defect epoxy drop images. In...
Autores principales: | Alam, Lamia, Kehtarnavaz, Nasser |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221190/ https://www.ncbi.nlm.nih.gov/pubmed/37430778 http://dx.doi.org/10.3390/s23104864 |
Ejemplares similares
-
ADE-CycleGAN: A Detail Enhanced Image Dehazing CycleGAN Network
por: Yan, Bingnan, et al.
Publicado: (2023) -
CycleGAN for interpretable online EMT compensation
por: Krumb, Henry, et al.
Publicado: (2021) -
Comparative analysis of CycleGAN and AttentionGAN on face aging application
por: Sharma, Neha, et al.
Publicado: (2022) -
Mol-CycleGAN: a generative model for molecular optimization
por: Maziarka, Łukasz, et al.
Publicado: (2020) -
Effective Immunohistochemistry Pathology Microscopy Image Generation Using CycleGAN
por: Xu, Zidui, et al.
Publicado: (2020)