Cargando…

Sodium-Ion-Free Fermentative Production of GABA with Levilactobacillus brevis CD0817

Gamma-aminobutyric acid (GABA) has positive effects on many physiological processes. Lactic acid bacterial production of GABA is a future trend. This study aimed to produce a sodium-ion-free GABA fermentation process for Levilactobacillus brevis CD0817. In this fermentation, both the seed and fermen...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Haixing, Pei, Jinfeng, Wei, Cheng, Lin, Zhiyu, Pan, Hao, Pan, Zhenkang, Guo, Xinyue, Yu, Zhou
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222995/
https://www.ncbi.nlm.nih.gov/pubmed/37233649
http://dx.doi.org/10.3390/metabo13050608
Descripción
Sumario:Gamma-aminobutyric acid (GABA) has positive effects on many physiological processes. Lactic acid bacterial production of GABA is a future trend. This study aimed to produce a sodium-ion-free GABA fermentation process for Levilactobacillus brevis CD0817. In this fermentation, both the seed and fermentation media used L-glutamic acid instead of monosodium L-glutamate as the substrate. We optimized the key factors influencing GABA formation, adopting Erlenmeyer flask fermentation. The optimized values of the key factors of glucose, yeast extract, Tween 80, manganese ion, and fermentation temperature were 10 g/L, 35 g/L, 1.5 g/L, 0.2 mM, and 30 °C, respectively. Based on the optimized data, a sodium-ion-free GABA fermentation process was developed using a 10-L fermenter. During the fermentation, L-glutamic acid powder was continuously dissolved to supply substrate and to provide the acidic environment essential for GABA synthesis. The current bioprocess accumulated GABA at up to 331 ± 8.3 g/L after 48 h. The productivity of GABA was 6.9 g/L/h and the molar conversion rate of the substrate was 98.1%. These findings demonstrate that the proposed method is promising in the fermentative preparation of GABA by lactic acid bacteria.