Cargando…
Bayesian Noise Modelling for State Estimation of the Spread of COVID-19 in Saudi Arabia with Extended Kalman Filters
The epistemic uncertainty in coronavirus disease (COVID-19) model-based predictions using complex noisy data greatly affects the accuracy of pandemic trend and state estimations. Quantifying the uncertainty of COVID-19 trends caused by different unobserved hidden variables is needed to evaluate the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10223553/ https://www.ncbi.nlm.nih.gov/pubmed/37430648 http://dx.doi.org/10.3390/s23104734 |