Cargando…
Bayesian Noise Modelling for State Estimation of the Spread of COVID-19 in Saudi Arabia with Extended Kalman Filters
The epistemic uncertainty in coronavirus disease (COVID-19) model-based predictions using complex noisy data greatly affects the accuracy of pandemic trend and state estimations. Quantifying the uncertainty of COVID-19 trends caused by different unobserved hidden variables is needed to evaluate the...
Autores principales: | Alyami, Lamia, Panda, Deepak Kumar, Das, Saptarshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10223553/ https://www.ncbi.nlm.nih.gov/pubmed/37430648 http://dx.doi.org/10.3390/s23104734 |
Ejemplares similares
-
A New Variational Bayesian Adaptive Extended Kalman Filter for Cooperative Navigation
por: Sun, Chengjiao, et al.
Publicado: (2018) -
Identification of Noise Covariance Matrices to Improve Orientation Estimation by Kalman Filter
por: Nez, Alexis, et al.
Publicado: (2018) -
An Overdispersed Black-Box Variational Bayesian–Kalman Filter with Inaccurate Noise Second-Order Statistics
por: Cao, Lin, et al.
Publicado: (2021) -
Variational Bayesian-Based Improved Maximum Mixture Correntropy Kalman Filter for Non-Gaussian Noise
por: Li, Xuyou, et al.
Publicado: (2022) -
Extended Kalman Filter for Estimation of Parameters in Nonlinear State-Space Models of Biochemical Networks
por: Sun, Xiaodian, et al.
Publicado: (2008)