Cargando…
Deep-Reinforcement-Learning-Based Object Transportation Using Task Space Decomposition
This paper presents a novel object transportation method using deep reinforcement learning (DRL) and the task space decomposition (TSD) method. Most previous studies on DRL-based object transportation worked well only in the specific environment where a robot learned how to transport an object. Anot...
Autor principal: | Eoh, Gyuho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10223963/ https://www.ncbi.nlm.nih.gov/pubmed/37430720 http://dx.doi.org/10.3390/s23104807 |
Ejemplares similares
-
Cooperative Object Transportation Using Curriculum-Based Deep Reinforcement Learning
por: Eoh, Gyuho, et al.
Publicado: (2021) -
Optimal Tasking of Ground-Based Sensors for Space Situational Awareness Using Deep Reinforcement Learning
por: Siew, Peng Mun, et al.
Publicado: (2022) -
The Task Decomposition and Dedicated Reward-System-Based Reinforcement Learning Algorithm for Pick-and-Place
por: Kim, Byeongjun, et al.
Publicado: (2023) -
Deep Reinforcement Learning-Based Task Scheduling in IoT Edge Computing
por: Sheng, Shuran, et al.
Publicado: (2021) -
Manipulation of free-floating objects using Faraday flows and deep reinforcement learning
por: Hardman, David, et al.
Publicado: (2022)