Cargando…
Protein Fitness Prediction Is Impacted by the Interplay of Language Models, Ensemble Learning, and Sampling Methods
Advances in machine learning (ML) and the availability of protein sequences via high-throughput sequencing techniques have transformed the ability to design novel diagnostic and therapeutic proteins. ML allows protein engineers to capture complex trends hidden within protein sequences that would oth...
Autores principales: | Mardikoraem, Mehrsa, Woldring, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224321/ https://www.ncbi.nlm.nih.gov/pubmed/37242577 http://dx.doi.org/10.3390/pharmaceutics15051337 |
Ejemplares similares
-
Generative models for protein sequence modeling: recent advances and future directions
por: Mardikoraem, Mehrsa, et al.
Publicado: (2023) -
Ensemble Learning with Supervised Methods Based on Large-Scale Protein Language Models for Protein Mutation Effects Prediction
por: Qu, Yang, et al.
Publicado: (2023) -
Learning with ensembles: how over-fitting can be useful
por: Sollich, P, et al.
Publicado: (1995) -
Learning the protein language of proteome-wide protein-protein binding sites via explainable ensemble deep learning
por: Hou, Zilong, et al.
Publicado: (2023) -
Ensemble learning method for the prediction of new bioactive molecules
por: Afolabi, Lateefat Temitope, et al.
Publicado: (2018)