Cargando…
Different Crystallization Behavior of Amorphous ITO Film by Rapid Infrared Annealing and Conventional Furnace Annealing Technology
An amorphous indium tin oxide (ITO) film (Ar/O(2) = 80:0.5) was heated to 400 °C and maintained for 1–9 min using rapid infrared annealing (RIA) technology and conventional furnace annealing (CFA) technology. The effect of holding time on the structure, optical and electrical properties, and crystal...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224407/ https://www.ncbi.nlm.nih.gov/pubmed/37241430 http://dx.doi.org/10.3390/ma16103803 |
_version_ | 1785050177140162560 |
---|---|
author | Li, Jiaming Jiang, Liangbao Li, Xiaoyu Luo, Junjie Liu, Jiaxi Wang, Minbo Yan, Yue |
author_facet | Li, Jiaming Jiang, Liangbao Li, Xiaoyu Luo, Junjie Liu, Jiaxi Wang, Minbo Yan, Yue |
author_sort | Li, Jiaming |
collection | PubMed |
description | An amorphous indium tin oxide (ITO) film (Ar/O(2) = 80:0.5) was heated to 400 °C and maintained for 1–9 min using rapid infrared annealing (RIA) technology and conventional furnace annealing (CFA) technology. The effect of holding time on the structure, optical and electrical properties, and crystallization kinetics of ITO films, and on the mechanical properties of the chemically strengthened glass substrates, were revealed. The results show that the nucleation rate of ITO films produced by RIA is higher and the grain size is smaller than for CFA. When the RIA holding time exceeds 5 min, the sheet resistance of the ITO film is basically stable (8.75 Ω/sq). The effect of holding time on the mechanical properties of chemically strengthened glass substrates annealed using RIA technology is less than that of CFA technology. The percentage of compressive-stress decline of the strengthened glass after annealing using RIA technology is only 12–15% of that using CFA technology. For improving the optical and electrical properties of the amorphous ITO thin films, and the mechanical properties of the chemically strengthened glass substrates, RIA technology is more efficient than CFA technology. |
format | Online Article Text |
id | pubmed-10224407 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102244072023-05-28 Different Crystallization Behavior of Amorphous ITO Film by Rapid Infrared Annealing and Conventional Furnace Annealing Technology Li, Jiaming Jiang, Liangbao Li, Xiaoyu Luo, Junjie Liu, Jiaxi Wang, Minbo Yan, Yue Materials (Basel) Article An amorphous indium tin oxide (ITO) film (Ar/O(2) = 80:0.5) was heated to 400 °C and maintained for 1–9 min using rapid infrared annealing (RIA) technology and conventional furnace annealing (CFA) technology. The effect of holding time on the structure, optical and electrical properties, and crystallization kinetics of ITO films, and on the mechanical properties of the chemically strengthened glass substrates, were revealed. The results show that the nucleation rate of ITO films produced by RIA is higher and the grain size is smaller than for CFA. When the RIA holding time exceeds 5 min, the sheet resistance of the ITO film is basically stable (8.75 Ω/sq). The effect of holding time on the mechanical properties of chemically strengthened glass substrates annealed using RIA technology is less than that of CFA technology. The percentage of compressive-stress decline of the strengthened glass after annealing using RIA technology is only 12–15% of that using CFA technology. For improving the optical and electrical properties of the amorphous ITO thin films, and the mechanical properties of the chemically strengthened glass substrates, RIA technology is more efficient than CFA technology. MDPI 2023-05-18 /pmc/articles/PMC10224407/ /pubmed/37241430 http://dx.doi.org/10.3390/ma16103803 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Jiaming Jiang, Liangbao Li, Xiaoyu Luo, Junjie Liu, Jiaxi Wang, Minbo Yan, Yue Different Crystallization Behavior of Amorphous ITO Film by Rapid Infrared Annealing and Conventional Furnace Annealing Technology |
title | Different Crystallization Behavior of Amorphous ITO Film by Rapid Infrared Annealing and Conventional Furnace Annealing Technology |
title_full | Different Crystallization Behavior of Amorphous ITO Film by Rapid Infrared Annealing and Conventional Furnace Annealing Technology |
title_fullStr | Different Crystallization Behavior of Amorphous ITO Film by Rapid Infrared Annealing and Conventional Furnace Annealing Technology |
title_full_unstemmed | Different Crystallization Behavior of Amorphous ITO Film by Rapid Infrared Annealing and Conventional Furnace Annealing Technology |
title_short | Different Crystallization Behavior of Amorphous ITO Film by Rapid Infrared Annealing and Conventional Furnace Annealing Technology |
title_sort | different crystallization behavior of amorphous ito film by rapid infrared annealing and conventional furnace annealing technology |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224407/ https://www.ncbi.nlm.nih.gov/pubmed/37241430 http://dx.doi.org/10.3390/ma16103803 |
work_keys_str_mv | AT lijiaming differentcrystallizationbehaviorofamorphousitofilmbyrapidinfraredannealingandconventionalfurnaceannealingtechnology AT jiangliangbao differentcrystallizationbehaviorofamorphousitofilmbyrapidinfraredannealingandconventionalfurnaceannealingtechnology AT lixiaoyu differentcrystallizationbehaviorofamorphousitofilmbyrapidinfraredannealingandconventionalfurnaceannealingtechnology AT luojunjie differentcrystallizationbehaviorofamorphousitofilmbyrapidinfraredannealingandconventionalfurnaceannealingtechnology AT liujiaxi differentcrystallizationbehaviorofamorphousitofilmbyrapidinfraredannealingandconventionalfurnaceannealingtechnology AT wangminbo differentcrystallizationbehaviorofamorphousitofilmbyrapidinfraredannealingandconventionalfurnaceannealingtechnology AT yanyue differentcrystallizationbehaviorofamorphousitofilmbyrapidinfraredannealingandconventionalfurnaceannealingtechnology |