Cargando…

Effect of Hydrogen Annealing on Performances of BN-Based RRAM

BN-based resistive random-access memory (RRAM) has emerged as a potential candidate for non-volatile memory (NVM) in aerospace applications, offering high thermal conductivity, excellent mechanical, and chemical stability, low power consumption, high density, and reliability. However, the presence o...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Doowon, Kim, Hee-Dong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224539/
https://www.ncbi.nlm.nih.gov/pubmed/37242080
http://dx.doi.org/10.3390/nano13101665
Descripción
Sumario:BN-based resistive random-access memory (RRAM) has emerged as a potential candidate for non-volatile memory (NVM) in aerospace applications, offering high thermal conductivity, excellent mechanical, and chemical stability, low power consumption, high density, and reliability. However, the presence of defects and trap states in BN-based RRAM can limit its performance and reliability in aerospace applications. As a result, higher set voltages of 1.4 and 1.23 V were obtained for non-annealed and nitrogen-annealed BN-based RRAM, respectively, but lower set voltages of 1.06 V were obtained for hydrogen-annealed BN-based RRAM. In addition, the hydrogen-annealed BN-based RRAM showed an on/off ratio of 100, which is 10 times higher than the non-annealed BN-based RRAM. We observed that the LRS changed to the HRS state before 10,000 s for both the non-annealed and nitrogen-annealed BN-based RRAMs. In contrast, the hydrogen-annealed BN-based RRAM showed excellent retention characteristics, with data retained up to 10,000 s.