Cargando…
Deep learning model accurately classifies metastatic tumors from primary tumors based on mutational signatures
Metastatic propagation is the leading cause of death for most cancers. Prediction and elucidation of metastatic process is crucial for the treatment of cancer. Even though somatic mutations have been linked to tumorigenesis and metastasis, it is less explored whether metastatic events can be identif...
Autores principales: | Zheng, Weisheng, Pu, Mengchen, Li, Xiaorong, Du, Zhaolan, Jin, Sutong, Li, Xingshuai, Zhou, Jielong, Zhang, Yingsheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10229594/ https://www.ncbi.nlm.nih.gov/pubmed/37253775 http://dx.doi.org/10.1038/s41598-023-35842-w |
Ejemplares similares
-
Using graph-based model to identify cell specific synthetic lethal effects
por: Pu, Mengchen, et al.
Publicado: (2023) -
Passenger mutations accurately classify human tumors
por: Salvadores, Marina, et al.
Publicado: (2019) -
A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns
por: Jiao, Wei, et al.
Publicado: (2020) -
Author Correction: A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns
por: Jiao, Wei, et al.
Publicado: (2022) -
lncRNAs classifier to accurately predict the recurrence of thymic epithelial tumors
por: Su, Yongchao, et al.
Publicado: (2020)