Cargando…
Unsupervised Deep Learning Can Identify Protein Functional Groups from Unaligned Sequences
Interpreting protein function from sequence data is a fundamental goal of bioinformatics. However, our current understanding of protein diversity is bottlenecked by the fact that most proteins have only been functionally validated in model organisms, limiting our understanding of how function varies...
Autores principales: | David, Kyle T, Halanych, Kenneth M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10231473/ https://www.ncbi.nlm.nih.gov/pubmed/37217837 http://dx.doi.org/10.1093/gbe/evad084 |
Ejemplares similares
-
An accurate method for identifying recent recombinants from unaligned sequences
por: Feng, Qian, et al.
Publicado: (2022) -
Adding unaligned sequences into an existing alignment using MAFFT and LAST
por: Katoh, Kazutaka, et al.
Publicado: (2012) -
Phylogenies from unaligned proteomes using sequence environments of amino acid residues
por: Aledo, Juan Carlos
Publicado: (2022) -
Aligning the unalignable: bacteriophage whole genome alignments
por: Bérard, Sèverine, et al.
Publicado: (2016) -
Extracting transcription factor binding sites from unaligned gene sequences with statistical models
por: Lu, Chung-Chin, et al.
Publicado: (2008)