Cargando…
Implications of resampling data to address the class imbalance problem (IRCIP): an evaluation of impact on performance between classification algorithms in medical data
OBJECTIVE: When correcting for the “class imbalance” problem in medical data, the effects of resampling applied on classifier algorithms remain unclear. We examined the effect on performance over several combinations of classifiers and resampling ratios. MATERIALS AND METHODS: Multiple classificatio...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232287/ https://www.ncbi.nlm.nih.gov/pubmed/37266187 http://dx.doi.org/10.1093/jamiaopen/ooad033 |