Cargando…
Implications of resampling data to address the class imbalance problem (IRCIP): an evaluation of impact on performance between classification algorithms in medical data
OBJECTIVE: When correcting for the “class imbalance” problem in medical data, the effects of resampling applied on classifier algorithms remain unclear. We examined the effect on performance over several combinations of classifiers and resampling ratios. MATERIALS AND METHODS: Multiple classificatio...
Autores principales: | Welvaars, Koen, Oosterhoff, Jacobien H F, van den Bekerom, Michel P J, Doornberg, Job N, van Haarst, Ernst P |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232287/ https://www.ncbi.nlm.nih.gov/pubmed/37266187 http://dx.doi.org/10.1093/jamiaopen/ooad033 |
Ejemplares similares
-
Evaluating machine learning algorithms to Predict 30-day Unplanned REadmission (PURE) in Urology patients
por: Welvaars, Koen, et al.
Publicado: (2023) -
Artificial intelligence in orthopaedics: false hope or not? A narrative review along the line of Gartner’s hype cycle
por: Oosterhoff, Jacobien H.F., et al.
Publicado: (2020) -
SAFEGUI: resampling-based tests of categorical significance in gene expression data made easy
por: Gatti, Daniel M., et al.
Publicado: (2009) -
The harm of class imbalance corrections for risk prediction models: illustration and simulation using logistic regression
por: van den Goorbergh, Ruben, et al.
Publicado: (2022) -
Rational Resampling Ratio as Enhancement to Shaft Imbalance Detection
por: Jablonski, Adam
Publicado: (2023)