Cargando…
GPX4 overexpressed non-small cell lung cancer cells are sensitive to RSL3-induced ferroptosis
Ferroptosis can be induced by inhibiting antioxidant enzymes GPX4 or system Xc(−), increased intracellular iron concentrations, and lipid peroxidation. Recently, it has been suggested that ferroptosis can be an effective way to induce cancer cell death, although the specific relevance and mechanism...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232506/ https://www.ncbi.nlm.nih.gov/pubmed/37258589 http://dx.doi.org/10.1038/s41598-023-35978-9 |
_version_ | 1785051994226950144 |
---|---|
author | Kim, Joo-Won Min, Dong Wha Kim, Dasom Kim, Joohee Kim, Min Jung Lim, Hyangsoon Lee, Ji-Yun |
author_facet | Kim, Joo-Won Min, Dong Wha Kim, Dasom Kim, Joohee Kim, Min Jung Lim, Hyangsoon Lee, Ji-Yun |
author_sort | Kim, Joo-Won |
collection | PubMed |
description | Ferroptosis can be induced by inhibiting antioxidant enzymes GPX4 or system Xc(−), increased intracellular iron concentrations, and lipid peroxidation. Recently, it has been suggested that ferroptosis can be an effective way to induce cancer cell death, although the specific relevance and mechanism of ferroptosis have not been fully elucidated. Here, we investigated the anticancer effects of ferroptosis inducers erastin and RSL3 on non-small cell lung cancer (NSCLC) cells. RSL3 induced cell death more effectively in NSCLC cells than erastin, with limited cytotoxicity in BEAS-2B normal bronchial epithelial cells. The sensitivity of NSCLC cells to RSL3 induced death was dependent on GPX4 expression levels; the effect of RSL3 was reversed by ferrostatin-1 (a ferroptosis inhibitor) but not by Z-VAD-FMK, chloroquine, bafilomycin A1, or necrostatin-1. RSL3 induced ferroptosis by promoting lipid peroxidation, elevating intracellular LIP concentration and ROS level, and blocking GSH-to-GSSH conversion through the inhibition of GPX4 and induction of Nrf2/HO1. Furthermore, RSL3 induced autophagosomes but disrupted the formation of autolysosomes with lysosomal membrane destabilization. GPX4 knockdown had a similar effect on ferroptosis phenotypes as RSL3. Taken together, RSL3-induced ferroptosis depends on the regulation of GPX4-Nrf2/HO1 in NSCLC cells. These results may be useful in predicting the ferroptosis response in NSCLC as well as drug resistant cancer cells. |
format | Online Article Text |
id | pubmed-10232506 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-102325062023-06-02 GPX4 overexpressed non-small cell lung cancer cells are sensitive to RSL3-induced ferroptosis Kim, Joo-Won Min, Dong Wha Kim, Dasom Kim, Joohee Kim, Min Jung Lim, Hyangsoon Lee, Ji-Yun Sci Rep Article Ferroptosis can be induced by inhibiting antioxidant enzymes GPX4 or system Xc(−), increased intracellular iron concentrations, and lipid peroxidation. Recently, it has been suggested that ferroptosis can be an effective way to induce cancer cell death, although the specific relevance and mechanism of ferroptosis have not been fully elucidated. Here, we investigated the anticancer effects of ferroptosis inducers erastin and RSL3 on non-small cell lung cancer (NSCLC) cells. RSL3 induced cell death more effectively in NSCLC cells than erastin, with limited cytotoxicity in BEAS-2B normal bronchial epithelial cells. The sensitivity of NSCLC cells to RSL3 induced death was dependent on GPX4 expression levels; the effect of RSL3 was reversed by ferrostatin-1 (a ferroptosis inhibitor) but not by Z-VAD-FMK, chloroquine, bafilomycin A1, or necrostatin-1. RSL3 induced ferroptosis by promoting lipid peroxidation, elevating intracellular LIP concentration and ROS level, and blocking GSH-to-GSSH conversion through the inhibition of GPX4 and induction of Nrf2/HO1. Furthermore, RSL3 induced autophagosomes but disrupted the formation of autolysosomes with lysosomal membrane destabilization. GPX4 knockdown had a similar effect on ferroptosis phenotypes as RSL3. Taken together, RSL3-induced ferroptosis depends on the regulation of GPX4-Nrf2/HO1 in NSCLC cells. These results may be useful in predicting the ferroptosis response in NSCLC as well as drug resistant cancer cells. Nature Publishing Group UK 2023-05-31 /pmc/articles/PMC10232506/ /pubmed/37258589 http://dx.doi.org/10.1038/s41598-023-35978-9 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Kim, Joo-Won Min, Dong Wha Kim, Dasom Kim, Joohee Kim, Min Jung Lim, Hyangsoon Lee, Ji-Yun GPX4 overexpressed non-small cell lung cancer cells are sensitive to RSL3-induced ferroptosis |
title | GPX4 overexpressed non-small cell lung cancer cells are sensitive to RSL3-induced ferroptosis |
title_full | GPX4 overexpressed non-small cell lung cancer cells are sensitive to RSL3-induced ferroptosis |
title_fullStr | GPX4 overexpressed non-small cell lung cancer cells are sensitive to RSL3-induced ferroptosis |
title_full_unstemmed | GPX4 overexpressed non-small cell lung cancer cells are sensitive to RSL3-induced ferroptosis |
title_short | GPX4 overexpressed non-small cell lung cancer cells are sensitive to RSL3-induced ferroptosis |
title_sort | gpx4 overexpressed non-small cell lung cancer cells are sensitive to rsl3-induced ferroptosis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232506/ https://www.ncbi.nlm.nih.gov/pubmed/37258589 http://dx.doi.org/10.1038/s41598-023-35978-9 |
work_keys_str_mv | AT kimjoowon gpx4overexpressednonsmallcelllungcancercellsaresensitivetorsl3inducedferroptosis AT mindongwha gpx4overexpressednonsmallcelllungcancercellsaresensitivetorsl3inducedferroptosis AT kimdasom gpx4overexpressednonsmallcelllungcancercellsaresensitivetorsl3inducedferroptosis AT kimjoohee gpx4overexpressednonsmallcelllungcancercellsaresensitivetorsl3inducedferroptosis AT kimminjung gpx4overexpressednonsmallcelllungcancercellsaresensitivetorsl3inducedferroptosis AT limhyangsoon gpx4overexpressednonsmallcelllungcancercellsaresensitivetorsl3inducedferroptosis AT leejiyun gpx4overexpressednonsmallcelllungcancercellsaresensitivetorsl3inducedferroptosis |