Cargando…

Mitochondrial morphology controls fatty acid utilization by changing CPT1 sensitivity to malonyl‐CoA

Changes in mitochondrial morphology are associated with nutrient utilization, but the precise causalities and the underlying mechanisms remain unknown. Here, using cellular models representing a wide variety of mitochondrial shapes, we show a strong linear correlation between mitochondrial fragmenta...

Descripción completa

Detalles Bibliográficos
Autores principales: Ngo, Jennifer, Choi, Dong Wook, Stanley, Illana A, Stiles, Linsey, Molina, Anthony J A, Chen, Pei‐Hsuan, Lako, Ana, Sung, Isabelle Chiao Han, Goswami, Rishov, Kim, Min‐young, Miller, Nathanael, Baghdasarian, Siyouneh, Kim‐Vasquez, Doyeon, Jones, Anthony E, Roach, Brett, Gutierrez, Vincent, Erion, Karel, Divakaruni, Ajit S, Liesa, Marc, Danial, Nika N, Shirihai, Orian S
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233380/
https://www.ncbi.nlm.nih.gov/pubmed/36917141
http://dx.doi.org/10.15252/embj.2022111901
_version_ 1785052221484826624
author Ngo, Jennifer
Choi, Dong Wook
Stanley, Illana A
Stiles, Linsey
Molina, Anthony J A
Chen, Pei‐Hsuan
Lako, Ana
Sung, Isabelle Chiao Han
Goswami, Rishov
Kim, Min‐young
Miller, Nathanael
Baghdasarian, Siyouneh
Kim‐Vasquez, Doyeon
Jones, Anthony E
Roach, Brett
Gutierrez, Vincent
Erion, Karel
Divakaruni, Ajit S
Liesa, Marc
Danial, Nika N
Shirihai, Orian S
author_facet Ngo, Jennifer
Choi, Dong Wook
Stanley, Illana A
Stiles, Linsey
Molina, Anthony J A
Chen, Pei‐Hsuan
Lako, Ana
Sung, Isabelle Chiao Han
Goswami, Rishov
Kim, Min‐young
Miller, Nathanael
Baghdasarian, Siyouneh
Kim‐Vasquez, Doyeon
Jones, Anthony E
Roach, Brett
Gutierrez, Vincent
Erion, Karel
Divakaruni, Ajit S
Liesa, Marc
Danial, Nika N
Shirihai, Orian S
author_sort Ngo, Jennifer
collection PubMed
description Changes in mitochondrial morphology are associated with nutrient utilization, but the precise causalities and the underlying mechanisms remain unknown. Here, using cellular models representing a wide variety of mitochondrial shapes, we show a strong linear correlation between mitochondrial fragmentation and increased fatty acid oxidation (FAO) rates. Forced mitochondrial elongation following MFN2 over‐expression or DRP1 depletion diminishes FAO, while forced fragmentation upon knockdown or knockout of MFN2 augments FAO as evident from respirometry and metabolic tracing. Remarkably, the genetic induction of fragmentation phenocopies distinct cell type‐specific biological functions of enhanced FAO. These include stimulation of gluconeogenesis in hepatocytes, induction of insulin secretion in islet β‐cells exposed to fatty acids, and survival of FAO‐dependent lymphoma subtypes. We find that fragmentation increases long‐chain but not short‐chain FAO, identifying carnitine O‐palmitoyltransferase 1 (CPT1) as the downstream effector of mitochondrial morphology in regulation of FAO. Mechanistically, we determined that fragmentation reduces malonyl‐CoA inhibition of CPT1, while elongation increases CPT1 sensitivity to malonyl‐CoA inhibition. Overall, these findings underscore a physiologic role for fragmentation as a mechanism whereby cellular fuel preference and FAO capacity are determined.
format Online
Article
Text
id pubmed-10233380
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-102333802023-06-02 Mitochondrial morphology controls fatty acid utilization by changing CPT1 sensitivity to malonyl‐CoA Ngo, Jennifer Choi, Dong Wook Stanley, Illana A Stiles, Linsey Molina, Anthony J A Chen, Pei‐Hsuan Lako, Ana Sung, Isabelle Chiao Han Goswami, Rishov Kim, Min‐young Miller, Nathanael Baghdasarian, Siyouneh Kim‐Vasquez, Doyeon Jones, Anthony E Roach, Brett Gutierrez, Vincent Erion, Karel Divakaruni, Ajit S Liesa, Marc Danial, Nika N Shirihai, Orian S EMBO J Articles Changes in mitochondrial morphology are associated with nutrient utilization, but the precise causalities and the underlying mechanisms remain unknown. Here, using cellular models representing a wide variety of mitochondrial shapes, we show a strong linear correlation between mitochondrial fragmentation and increased fatty acid oxidation (FAO) rates. Forced mitochondrial elongation following MFN2 over‐expression or DRP1 depletion diminishes FAO, while forced fragmentation upon knockdown or knockout of MFN2 augments FAO as evident from respirometry and metabolic tracing. Remarkably, the genetic induction of fragmentation phenocopies distinct cell type‐specific biological functions of enhanced FAO. These include stimulation of gluconeogenesis in hepatocytes, induction of insulin secretion in islet β‐cells exposed to fatty acids, and survival of FAO‐dependent lymphoma subtypes. We find that fragmentation increases long‐chain but not short‐chain FAO, identifying carnitine O‐palmitoyltransferase 1 (CPT1) as the downstream effector of mitochondrial morphology in regulation of FAO. Mechanistically, we determined that fragmentation reduces malonyl‐CoA inhibition of CPT1, while elongation increases CPT1 sensitivity to malonyl‐CoA inhibition. Overall, these findings underscore a physiologic role for fragmentation as a mechanism whereby cellular fuel preference and FAO capacity are determined. John Wiley and Sons Inc. 2023-03-14 /pmc/articles/PMC10233380/ /pubmed/36917141 http://dx.doi.org/10.15252/embj.2022111901 Text en © 2023 The Authors. Published under the terms of the CC BY 4.0 license. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Articles
Ngo, Jennifer
Choi, Dong Wook
Stanley, Illana A
Stiles, Linsey
Molina, Anthony J A
Chen, Pei‐Hsuan
Lako, Ana
Sung, Isabelle Chiao Han
Goswami, Rishov
Kim, Min‐young
Miller, Nathanael
Baghdasarian, Siyouneh
Kim‐Vasquez, Doyeon
Jones, Anthony E
Roach, Brett
Gutierrez, Vincent
Erion, Karel
Divakaruni, Ajit S
Liesa, Marc
Danial, Nika N
Shirihai, Orian S
Mitochondrial morphology controls fatty acid utilization by changing CPT1 sensitivity to malonyl‐CoA
title Mitochondrial morphology controls fatty acid utilization by changing CPT1 sensitivity to malonyl‐CoA
title_full Mitochondrial morphology controls fatty acid utilization by changing CPT1 sensitivity to malonyl‐CoA
title_fullStr Mitochondrial morphology controls fatty acid utilization by changing CPT1 sensitivity to malonyl‐CoA
title_full_unstemmed Mitochondrial morphology controls fatty acid utilization by changing CPT1 sensitivity to malonyl‐CoA
title_short Mitochondrial morphology controls fatty acid utilization by changing CPT1 sensitivity to malonyl‐CoA
title_sort mitochondrial morphology controls fatty acid utilization by changing cpt1 sensitivity to malonyl‐coa
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233380/
https://www.ncbi.nlm.nih.gov/pubmed/36917141
http://dx.doi.org/10.15252/embj.2022111901
work_keys_str_mv AT ngojennifer mitochondrialmorphologycontrolsfattyacidutilizationbychangingcpt1sensitivitytomalonylcoa
AT choidongwook mitochondrialmorphologycontrolsfattyacidutilizationbychangingcpt1sensitivitytomalonylcoa
AT stanleyillanaa mitochondrialmorphologycontrolsfattyacidutilizationbychangingcpt1sensitivitytomalonylcoa
AT stileslinsey mitochondrialmorphologycontrolsfattyacidutilizationbychangingcpt1sensitivitytomalonylcoa
AT molinaanthonyja mitochondrialmorphologycontrolsfattyacidutilizationbychangingcpt1sensitivitytomalonylcoa
AT chenpeihsuan mitochondrialmorphologycontrolsfattyacidutilizationbychangingcpt1sensitivitytomalonylcoa
AT lakoana mitochondrialmorphologycontrolsfattyacidutilizationbychangingcpt1sensitivitytomalonylcoa
AT sungisabellechiaohan mitochondrialmorphologycontrolsfattyacidutilizationbychangingcpt1sensitivitytomalonylcoa
AT goswamirishov mitochondrialmorphologycontrolsfattyacidutilizationbychangingcpt1sensitivitytomalonylcoa
AT kimminyoung mitochondrialmorphologycontrolsfattyacidutilizationbychangingcpt1sensitivitytomalonylcoa
AT millernathanael mitochondrialmorphologycontrolsfattyacidutilizationbychangingcpt1sensitivitytomalonylcoa
AT baghdasariansiyouneh mitochondrialmorphologycontrolsfattyacidutilizationbychangingcpt1sensitivitytomalonylcoa
AT kimvasquezdoyeon mitochondrialmorphologycontrolsfattyacidutilizationbychangingcpt1sensitivitytomalonylcoa
AT jonesanthonye mitochondrialmorphologycontrolsfattyacidutilizationbychangingcpt1sensitivitytomalonylcoa
AT roachbrett mitochondrialmorphologycontrolsfattyacidutilizationbychangingcpt1sensitivitytomalonylcoa
AT gutierrezvincent mitochondrialmorphologycontrolsfattyacidutilizationbychangingcpt1sensitivitytomalonylcoa
AT erionkarel mitochondrialmorphologycontrolsfattyacidutilizationbychangingcpt1sensitivitytomalonylcoa
AT divakaruniajits mitochondrialmorphologycontrolsfattyacidutilizationbychangingcpt1sensitivitytomalonylcoa
AT liesamarc mitochondrialmorphologycontrolsfattyacidutilizationbychangingcpt1sensitivitytomalonylcoa
AT danialnikan mitochondrialmorphologycontrolsfattyacidutilizationbychangingcpt1sensitivitytomalonylcoa
AT shirihaiorians mitochondrialmorphologycontrolsfattyacidutilizationbychangingcpt1sensitivitytomalonylcoa